
DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

Corso di Laurea in Informatica

ImagiNet: a network simulator
based on VDE

Supervisor:
Chiar.mo Prof.
Renzo Davoli

Presented by:
Samuele Musiani

I Sessione
Anno accademico 2024/2025

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

We can lift ourselves out of ignorance, we can find ourselves
as creatures of excellence and intelligence and skill. We can
be free! We can learn to fly!

Richard Bach, Jonathan Livingston Seagull

Sommario
I software di simulazione di rete permettono agli utenti di condurre esperimenti
su topologie di rete senza dover dipendere da hardware fisico e costoso. Questi
strumenti consentono agli studenti di esercitarsi e comprendere meglio le reti
di calcolatori, consentendo al contempo agli insegnanti di creare laboratori
complementari per la valutazione degli studenti durante il corso. In questa tesi
presentiamo ImagiNet, un simulatore di rete che si distingue dagli altri per la
sua semplicità e le sue funzionalità. È progettato per essere moderno e leggero,
consentendo la simulazione di scenari complessi su hardware di uso comune. Il
programma è specificamente progettato per assistere gli studenti durante il loro
percorso di studi e gli insegnanti durante i loro corsi universitari. ImagiNet ha già
dimostrato il suo successo con un piccolo gruppo di studenti, sebbene nulla ne
impedisca il suo utilizzo in classi universitarie di grandi dimensioni.

v

Abstract
Network simulation software allows users to carry out experiments on network
topologies without depending on physical and expensive hardware. These tools
enable students to practice and better understand computer networks, while
enabling teachers to create complementary laboratories for evaluating students
during a course. In this thesis, we introduce ImagiNet, a network simulator
that distinguishes itself from others through its simplicity and capabilities. It
is designed to be modern and lightweight, enabling the simulation of complex
scenarios on commodity hardware. The system is specifically designed to assist
students during their learning journey and teachers during their university
courses. ImagiNet has already proven successful with a small group of students,
though nothing prevents it from being used in large university-scale classes.

vii

Table of contents
Sommario . v
Abstract . vii
1. Introduction . 1

1.1. State of the art . 3
1.1.1. GNS3 . 3
1.1.2. Packet Tracer . 3
1.1.3. EVE-NG . 4
1.1.4. Boson NetSim . 4
1.1.5. Kathará . 5
1.1.6. Containerlab . 8
1.1.7. Vnx . 8
1.1.8. Marionnet . 9

1.2. Objective . 10
1.2.1. Structure of the document . 10

2. Implementation . 11
2.1. Background . 11

2.1.1. VMs . 11
2.1.2. Linux namespaces . 11
2.1.3. VDE . 12

2.2. Declarative configuration . 17
2.3. Interface . 19
2.4. Rust . 22
2.5. Stateful without a service . 23
2.6. Keeping it simple . 24
2.7. Real word experience . 26
2.8. Performance . 27

2.8.1. ImagiNet performance . 27
2.8.2. Topology performance . 30

3. Learning by doing . 35
3.1. Networking basics . 36

3.1.1. Lab 0 . 36
3.1.2. Lab 1 . 41

3.2. Switching and VLANs . 44
3.2.1. VDE switch interface . 44
3.2.2. Lab 2 . 44
3.2.3. Lab 3 . 46

3.3. Routing . 48
3.3.1. Lab 4 . 48

viii

3.3.2. Lab 5 . 49
3.3.3. Lab 6 . 51

3.4. Firewalls . 52
3.4.1. Lab 7 . 53

3.5. Advance scenarios . 57
3.5.1. Group laboratories . 57

3.6. Teaching with ImagiNet . 58
4. Conclusions . 61

4.1. Improvements . 61
4.1.1. IaC differential updates . 61
4.1.2. Missing VDE features and optimisations . 62
4.1.3. Didattic router and firewall . 62
4.1.4. Software packaging . 63

4.2. Final thoughts . 63
Appendices . 65

A Topology generator . 65
B Topology creation . 69

B.1 Topology 0 efficient . 69
B.2 Topology 0 ImagiNet . 69
B.3 Topology 1 efficient . 70
B.4 Topology 1 ImagiNet . 71
B.5 Topology 2 efficient . 72
B.6 Topology 2 ImagiNet . 73
B.7 Topology 3 ImagiNet . 75

C Laboratories . 79
C.1 Lab 0 . 79
C.2 Lab 1 . 80
C.3 TCP/UDP client script . 80
C.4 TCP/UDP server script . 81
C.5 Lab 2 . 82
C.6 Lab 3 . 83
C.7 Lab 4 . 83
C.8 Lab 5 . 84
C.9 Lab 6 . 85
C.10 Lab 7 . 87
C.11 Lab VXVDE . 88

Bibliography . 89
Acknowledgements . 95

ix

0

Introduction
Computer networks are a fundamental part of everyone’s life as almost all devices
used daily, from smartphones to computers, are connected through the Internet.
To most people, the Internet appears as a vast and nearly mystical entity that just
works, or just doesn’t if the WiFi signal is not strong enough. But for computer
science students, who have spent their nights studying textbooks and memorising
protocols, the Internet is just an enormous number of computers that have agreed
upon a set of rules to be able to communicate with one another. What once
seemed mysterious now inspires admiration: the magic is still there, but is no
longer steamed by ignorance but by charm and admiration. There is something
fascinating about the fact that the entire world has agreed to a set of rules dictated
by the need to exchange information as quickly as possible.

Internet and computer networks are playing and will play a fundamental role in
the future, and it’s essential that they keep working as long as needed. System
administrators are the unseen guardians that everyone depends on, though most
remain unaware of their presence. They are the little-known and invisible heroes
who keep the Internet floating.

As with everything, a person needs to understand the basics before diving head-
first into the myriad of protocols and rules that a network administrator needs to
know. A great number of textbooks on these topics exist [1], [2], and readers who
want to understand this thesis must have a good background knowledge of them.
But knowledge without practice is the same as describing the elements of a food
without actually testing it. To address this gap, theory and practical experience
often have to be carried out simultaneously. Students who are learning how to
program will only be able to truly understand it by writing code themselves
and actually running it on a computer. The same is valid for computer network

1

students: learning and memorising all the protocols is somewhat important, but
observing the protocols in action will bring value and a deeper understanding of
every actor involved.

In the past, when computers were not as powerful as they are today, the only
way to practice with a network scenario was to have or rent physical hardware
and experiment with it. This was impractical and often expensive, resulting in
few people having the opportunity to apply what they were learning. Today,
computers have become powerful enough to virtualise every network device and
simulate network scenarios without the need to physically buy or rent expensive
network hardware. As a result, a special type of software referred to as network
simulators has quickly bloomed. This type of software allows users to have a fully
functional and realistic network topology to experiment with inside the software
itself. Practising computer networks while studying has become easily accessible,
and students are now able to learn by experimenting with network protocols and
network device configuration.

Virtual Square [3] has created the Virtual Distributed Ethernet (VDE) project,
which can be used to connect virtual entities in an Ethernet-compliant way. This
project has been described more in depth in Chapter 2.1.3. VDE is a very powerful
tool, but can be difficult to manage, especially with a large topology simulation.
ImagiNet is built on top of VDE to make complex configuration scenarios simple
and easy to manage. Topologies can now be defined in a text file and started with
just one command. ImagiNet will keep track of the state of the simulation and will
be able to manage it through its entire duration.

ImagiNet was born with the intent to create a simpler way to configure and
manage VDE topologies, though it became almost immediate that its capabilities
were reaching way beyond a simple configuration tool. ImagiNet was becoming
a unique network simulator that distinguishes itself from all the others. After this
realisation, the development direction of ImagiNet has quickly changed.

ImagiNet is now an easy-to-use command-line tool capable of simulating network
topologies effortlessly. It is designed for students and as a complementary tool
for network course laboratories in universities. This thesis covers all relevant
ImagiNet aspects and offers examples on how to use it for network laboratories.
At the end of it, the reader should understand how ImagiNet place itself among all
the other network simulation software and how powerful and useful it can be as
a complement to a network course.

2

1.1. State of the art
There are a lot of Network simulation or emulation software with each of them
having unique characteristics. This section is primarily focused on the most used
ones and what makes them different from one another.

1.1.1. GNS3
GNS3 is an open-source cross-platform graphical network simulator first released
in 2007 [4], [5], [6]. It’s used to emulate network devices from various vendors
(Cisco, Juniper, Mikrotik, Arista, etc.), and it’s primarily used by students who need
hands-on experience while studying for network certifications (e.g. CCNA) [7].

GNS3 is designed with a client-server approach where the server is a background
process that is responsible for orchestrating all the simulations, while the graphical
user interface (GUI) is the client that allows the user to interact in a friendly way
with the server. The majority of the time, the server is hosted on the same machine
as the client, but it is possible to host the server remotely. The only way to use
GNS3 is with a GUI; it’s not possible to use it without it.

Simple PCs that can execute simple commands like ping , traceroute or
netcat are simulated using VPCs. These PCs provide a basic node to test

connectivity, but are not meant to be a service runner. Nodes interconnect with
uBridge¹, Dynamips is used for IOS² routers and switches, and QEMU and Docker
are used for other types of devices [8], [9]. It must be noted that GNS3 can emulate
various devices from different vendors, but the firmware images must be provided
by the user. Most vendors do not have free and publicly available images that can
be downloaded.

1.1.2. Packet Tracer
Packet Tracer is a network simulation tool developed by Cisco, where the user
can practice networking and cybersecurity skills in a virtual lab [10]. It’s primarily
used for testing and practising for Cisco certifications (e.g., CCNA, CCNP, etc.), as
it includes all the necessary Cisco firmware images for the devices that need to be
studied during the preparation for a certification. As the images of Cisco devices
are not openly distributed, this could be one of the only ways to test a Cisco device
in a virtual environment.

¹uBridge is developed by the GNS3 team: https://github.com/GNS3/ubridge
²Internetworking Operating System is a family of proprietary network operating systems

developed by Cisco.

3

https://github.com/GNS3/ubridge

Packet Tracer is closed-source and not entirely free to use. There is a free version
available, but it comes with limited functionality, one major limitation being the
number of devices that can be included in a simulation, which makes it not very
practical. The program has a graphical user interface and cannot be used without
it. Since it is closed-source, there is no available information on how virtualisation
is implemented or how PCs, switches, and routers are interconnected. Addition-
ally, it does not support integration with external programs like QEMU or Docker,
nor does it allow distributing the simulation load across one or more additional
computers.

1.1.3. EVE-NG
EVE-NG is a network emulation platform designed for professionals and students
to design, test, and simulate complex network topologies in a virtualised environ-
ment [11]. Unlike Packet Tracer and more similar to GNS3, EVE-NG supports
images from multiple vendors. This makes it useful not just for Cisco certifications,
but also for training scenarios where multi-vendor devices are interconnected.
However, like GNS3, users must supply their own operating system (OS) images,
as EVE-NG does not include them.

EVE-NG is closed-source and offers a Community edition and a Professional
Edition. The Community edition is free to use, but is limited in the number of
features. Both editions run in a web browser using an HTML5 interface, and it
is not possible to use them without a graphical interface. Unlike Packet Tracer,
it supports integration with other tools like QEMU and Docker and allows labs
to be distributed across multiple servers. EVE-NG offers a more realistic lab envi-
ronment than Packet Tracer, but it has a steeper learning curve and higher system
requirements.

1.1.4. Boson NetSim
Boson NetSim is a closed-source, non-free network simulation tool designed
specifically to help students prepare for Cisco certifications. In particular, there
are three prices for CCNA, ENCOR and ENARSI certification [12].

The majority of labs are already configured, but customisation is possible. For
device and network simulation, Boson’s proprietary Virtual Packet Technology is
used [13]. Cisco device images are already provided, but are limited and not all
devices are available. The only version available is accessible via a website, which
means that the simulation is not done on the user’s machine, but on some propri-
etary server. While this can be useful as it can simulate topologies on a generic
device that has a web browser, there is no possibility to integrate NetSim with any
third-party tool like Docker or QEMU.

4

1.1.5. Kathará
Kathará is an open-source container-based network emulation tool for testing and
learning [14]. The development of the project is based in Italy, with significant
contributions coming from individuals linked with the Università degli Studi Roma
Tre. It is also used in multiple universities to teach networking courses [15].

Kathará requires root privileges as it is heavily dependent on Docker, where every
node in the network is a container. As Docker is not ideal for configuring network
scenarios based on its configuration files and how it is managed, one can think of
Kathará as a wrapper around it. It is a command-line tool and does not require a
graphical interface.

It is based on three concepts: device, collision domain and network scenario [16]:

• A device is a virtual entity that represents and acts like a real device. It could be
anything from a router, a simple PC or a full Domain Name System (DNS) server.
Every device has its own disk and can be limited in the amount of resources (i.g,
CPU and RAM) it can use. It is possible to pre-configure these devices with a
configuration file that specifies what commands need to be executed at startup.
In Listing 1 is reported an example of a file is reported that assigns an IP to the
eth0 interface and starts the Apache server.

ip address add 10.0.0.1/24 dev eth0 sh
ip link set dev eth0 mtu 1450

/etc/init.d/apache2 start

Listing 1: A sample startup configuration file for a Kathará node [17]

• A collision domain is a layer 2 local area network (LAN) that interconnects
devices. It acts like a hub because it does not filter packets based on MAC address
like a switch would do. It is common to associate a single letter with collision
domains in Kathará.

• Network scenarios are a representation of a network topology. In particular,
it is a directory that contains multiple configuration files that specify which
devices are present, in which collision domain they are attached and all the
configuration needed for the devices. The Kathará command line interface (CLI)
will then read this directory and start the topology. Listing 2 shows an example
of which files are inside the directory. The *.startup files are configurations
for devices, while the lab.conf file is the main topology configuration in

5

which collision domains are specified. Listing 3 shows the content of the file
lab.conf .

lab.conf pc1.startup pc2.startup r1.startup
r2.startup

device

Listing 2: Directory structure of a simple Kathará Network scenario [18].

pc1[0]="A" kathara

r1[0]="A"
r1[1]="B"

pc2[0]="C"

r2[0]="C"
r2[1]="B"

Listing 3: A configuration example for Kathará in which four devices are speci-
fied. We can see that pc1 has only the 0 interface connected to the collision
domain A . Instead, r1 has the 0 interface attached to the collision domain

A and the interface 1 attached to the collision domain B [19].

A Docker Network Plugin is a piece of software that defines and provides connec-
tivity and communications between Docker containers [20]. The Docker bridge is
the default driver for establishing private container networks, but it is not a proper
layer 2 broadcast domain or a Linux bridge, as it requires an IP subnet assigned to
it. To overcome the limitations of the default Docker’s network plugins and create
a real layer 2 broadcast domain, Kathará developed a new plugin [16].

This plugin is based on VDE and for every collision domains will create a hub to
attach the containers [21]. VDE-2 (Chapter 2.1.3.1) is used to create a hub, therefore
a vde_switch ³ process is started with the flag -x . To attach a container to
the switch, a TAP interface is created inside the container with vde_tap and
it’s attached to the switch as shown in Figure 1. It must be noted that the switch
process is not running inside the containers but in a separate namespace that is
not shared with the host. In fact, this works even though VDE-2 is not installed
on the physical machine, but the pid and crl sockets of the switch are still present
under /tmp/katharanp/kt-<NET ID> .

³It is important to note that, at the time of writing, the switch is initialised with an excessively
large number of ports. This leads to a significant performance degradation, as the VDE-2 switch
does not efficiently handle a high port count when the hub flag is enabled. As a result, Kathará
experiences substantial performance issues under these conditions.

6

Host

Container 1

eth0

Container 2

eth0

Docker Network: L2net

 kt-<NET ID>
VDE Switch Process

Tap R/W Thread Tap R/W Thread

Figure 1: Kathará Docker Network Plugin diagram.

Docker and its network plugins are written in the Go programming language,
while VDE-2 is written i C. To be able to use VDE with Go, a feature called Cgo is
used that lets Go packages call C code [22].

Kathará does not allow to configure the VDE switch as it is intended to be used
only as a hub. This means that VLANs can’t be configured or must be tagged inside
the containers (but this leaves out the possibility of having untagged or access
ports). It also does not provide the possibility to attach multiple switches together
to test spanning tree protocol (STP) topologies.

Although users can provide their own container image, Kathará has a more open
approach, and it is not intended for studying specific vendor hardware or software;
therefore, it is not the best tool for studying for network certifications. Meanwhile,
it is versatile and powerful for advanced routing and protocol testing. Inside the
official lab repository, a lot of examples can be found about inter-domain and
intra-domain routing, datacenter routing, openflow and even a full lab dedicated
to P4 [23].

Kathará does not officially support integration with eternal tools like QEMU or
other VDE connections. Also, the VDE switch used to create collision domains
is started inside a different namespace, so it is impossible to connect to it from
the host using a normal VDE connection. But it is possible to connect a collision
domain to an interface on the host.

7

1.1.6. Containerlab
Containerlab is a CLI tool that provides orchestration and management for
container-based networking labs [24]. It is built on top of Docker and requires
root privileges in order to be used. Similar to Kathará, it uses configuration files
to describe topologies in a declarative manner. These configuration files are in
the YAML (YAML Ain’t Markup Language) format [25]. Although Containerlab is
primarily designed for containerised environments, it also supports the integration
of virtual machines through Linux bridges or Open vSwitch (OVS) bridges [26]. A
wide range of container images from various vendors are supported [27].

For container interconnections, Containerlab defines two types of networks [28]:

• The management network is based on Docker bridges. It connects all contain-
ers to the host and assigns both IPv4 and IPv6 addresses to each management
interface.

• For inter-container peer-to-peer links, which are not part of the management
network, a connection is created using Linux veth interfaces. These are virtual
Ethernet devices that simulate a point-to-point connection between two end-
points, which may reside in different network namespaces.

Based on the available lab examples on the official website, Containerlab is
targeted toward advanced networking studies. Numerous labs focus on dynamic
routing protocols such as Open Shortest Path First (OSPF) and Border Gateway
Protocol (BGP) in wide area network (WAN) topologies, as well as datacenter
scenarios involving technologies like VXLAN (Virtual eXtensible Local Area
Network) [29], [30].

1.1.7. Vnx
VNX is a general-purpose open-source virtualisation tool designed to help build
virtual network testbeds automatically. It allows the definition and automatic
deployment of network scenarios made of virtual machines of different types:
Linux, Windows, FreeBSD, Dynamips routers or LXC containers. Based on a user-
defined topology, it interconnects all the machines and also connects them to the
host network [31].

VNX is significantly more complex than other tools. Its installation is non-trivial,
and it requires a substantial amount of software to function. Network topologies
are defined using XML (Extensible Markup Language) files, which can be difficult
to read and manage. Running VNX requires root privileges, as well as a filesystem
for each virtual device involved. It operates entirely from the CLI and does not

8

rely on a GUI. As it is designed primarily for testbed environments, VNX provides
a mature and structured way to define and execute commands within each device
compared to other software.

VNX uses libvirt to interact with the virtualisation capabilities of the host. It also
integrates Dynamips virtualisation to allow limited emulation of Cisco and Juniper
routers. It is also possible to integrate Open vSwitch with support for VLAN
configurations, inter-switch connections and software-defined networking (SDN)
configurations.

The VNX website is partially outdated, with many links no longer functional at
the time of writing. As stated before, the tool is not particularly easy to install or
manage, so VNX may not be the most suitable choice for studying networking,
especially for users with limited background knowledge. However, it can be a
powerful tool for more advanced use cases and complex testbed environments.

1.1.8. Marionnet
Marionnet is a virtual network emulator born in April 2005. It provides a graphical
user interface that allows users to define, configure, and deploy simple computer
networks [32]. The platform is built from the ground up to utilise User-Mode Linux
(UML) for virtualisation and VDE for the network infrastructure.

Marionnet is specifically designed for teaching computer networking in universi-
ties. It does not require root privileges, making it safe and suitable for deployment
on shared lab machines without compromising system integrity or security. It
operates entirely within a GNU/Linux ecosystem, without relying on proprietary
software or vendor-specific equipment. Its simplicity compared to other network
emulation tools makes it especially well-suited for beginners. Students can exper-
iment with basic topologies and develop a solid understanding of fundamental
networking concepts.

As it is based on VDE, it is the first network emulator that provides a real vendor-
neutral interface for the core switch. This allows students to learn concepts like
VLANs or spanning tree without the complexity of vendor-specific commands.

Marionnet is based on the VDE-2 (see Chapter 2.1.3.1) and does not fully leverage
newer features introduced in vdeplug4 (see Chapter 2.1.3.2). According to its
official website, bug reports on Launchpad and the state of the latest release,
development appears to have stagnated, and the project is likely in a maintenance
or inactive state. This lack of ongoing support has resulted in compatibility issues
with recent Debian-based distributions. Currently, Marionnet can be installed or
used by downloading the latest available virtual machine image from the official

9

website. However, this image is based on Ubuntu 16.04, a release that is more than
nine years old and exhibits various stability and security issues.

1.2. Objective
With ImagiNet, we aim to provide a simple to use, open-source, vendor-neutral
network simulator to test, teach and learn about computer networks. This project
is inspired by Marionnet (Chapter 1.1.8), but it leverages new features of VDE that
are part of vdeplug4. It is completely redesigned to be a lot smaller and performant,
while providing more features and having a more user-friendly interface.

ImagiNet is intended to be used as a tool to learn and teach about simple and
intermediate networking topics. It is perfect for universities as it does not require
any privileges and can be installed in laboratories where users do not have root
privileges on the computers. It can also be used remotely as it does not require a
graphical user interface and can scale in order to be used across multiple machines.

1.2.1. Structure of the document
In Chapter 2, we cover the necessary background knowledge required to under-
stand the subjects of all chapters. We also describe in detail all the design choices
behind ImagiNet and how they relate to other software simulation tools. This
chapter also includes a section entirely dedicated to the performance evaluation
of ImagiNet and the simulations carried out with it.

In Chapter 3, we propose multiple laboratories and exercises that demonstrate how
networking topics can be taught with ImagiNet. All laboratories are comprehen-
sively commented and guided, serving as a starting point for hands-on examples
of the most important concepts covered in a network course.

Finally, in Chapter 4, we present a comprehensive list of possible features to
improve ImagiNet’s capabilities and interface. The final section provides closing
remarks for this work, reflecting on the achievements and future potential of the
project.

10

Implementation
This chapter covers the implementation of ImagiNet, the design choices and a
performance evaluation of the simulations created. By the end of this chapter, the
reader should have a clear understanding of the design choices behind ImagiNet,
the top-level implementation details and how it differs from other network simu-
lation tools.

2.1. Background
This section provides the reader with the necessary background knowledge to
understand the subjects addressed in the following chapter.

2.1.1. VMs
A Virtual Machine (VM) is a virtualization of a computer system. It is based on
computer architectures and provides the functionality of a physical computer. By
virtualizing the physical hardware, a real operating system can be run, by fully
isolating it from the host where the virtual machine is running.

QEMU [33] and VirtualBox [34] are the most famous implementations of virtual
machines. User-Mode Linux is another implementation that works only on Linux
[35], [36].

2.1.2. Linux namespaces
Namespaces are a feature of the Linux kernel that partitions a set of resources in
order to make different processes view different resources than others. The type
of namespaces present at the time of writing are: mount (mnt), process id (pid),

11

network (net), inter-process communication (ipc), hostname (uts), user id (user),
cgroup namespace (for resource control isolation) and time namespace. Each of
them isolates a single type of resource. For example, the network namespace is
used to isolate network devices, IPv4 and IPv6 protocol stacks, IP routing tables
and firewall rules. Meanwhile, the mount namespace is used to control mount
points and is utilized by vdens (see Chapter 2.1.3.3) to provide a different DNS
server than the one configured on the host machine.

Namespaces are used to implement containers in Linux. While containers might
seem similar to virtual machines at first glance, an important difference is that
processes within a namespace still share the same kernel as the rest of the oper-
ating system. This means that the performance are greater and the overhead is
much lower, but the isolation is weaker: if there’s a vulnerability in the kernel, the
entire system could be compromised, not just the container.
2.1.2.1. Docker

Docker is a set of platform-as-a-service (PaaS) products to deliver software in
lightweight containers. This tool allows to automate the deployment of applica-
tions in containers so that applications can work efficiently in isolation.

Containers are isolated from one another and bundle their own software, libraries
and configuration files. They can communicate with each other through Docker
bridges that are somewhat similar to IP switches. Because all of the containers
share the services of a single operating system kernel, they use fewer resources
than virtual machines.

As noted in the first chapter, a lot of network virtualization programs use Docker
to simulate hosts. This allows for a great topology generation with a lot of different
software and services that do not consume a large amount of resources like VMs.
Docker works well within itself, but it’s not the most flexible tool to be integrated
with VDE or other external services and it also requires root privileges⁴. We did
not think that integrating ImagiNet with Docker was necessary and that it would
not bring significant value in the project. It is although possible, as ImagiNet is
based on VDE, to integrate it manually with any external tools.

2.1.3. VDE
VDE is an acronym that stands for Virtual Distributed Internet. It is a virtual
network that is Ethernet compliant and can run on different physical hosts, making
it distributed [37]. The software is written in C and it offers a library that can be
used to integrate VDE in other applications, but it is mostly a set of command

⁴There exists a rootless version of Docker but has more limitations.

12

line tools that can be used to create switches, cables, tap interfaces and tunnels
between physical hosts.

VDE operates entirely in user space, without requiring any privileges. The only
privilege required is if the user wants to create a tap interface. This is not a
limitation of VDE, but rather a security feature of Linux. The fact that no privilege
is required to use VDE makes it a perfect tool for ImagiNet to create the underlying
networking. This is because it can be used in an environment where the user does
not have root privileges, which is a common scenario in school and university
laboratories.

VDE is integrated with several virtualization tools like QEMU [33], KVM [38],
User-Mode Linux [35], [36] and VirtualBox [34]. It can also be used inside Linux
namespaces (see Chapter 2.1.3.3), making it well-suited for interconnecting several
virtual machines to create a virtual laboratory for learning and testing. It also
must be noted that some networking TCP/IP stacks like lwipv6 and picotcp [39]
have sockets for VDE plugs, as well as namespace-implemented TCP/IP stacks like
libvdestack [40] and educational emulators like umps3 [41].

The initial VDE version is called VDE-2 (see Chapter 2.1.3.1) and is the official VDE
version supported by most of the virtualization platforms. Another version of some
parts of VDE has been developed and is called vdeplug4 (see Chapter 2.1.3.2). This
last version does not cover all VDE-2 functionalities but offers a re-implementation
of some of them in order to make them more efficient. It also brings new plugins
for new types of connections (like PTP or VXVDE). This last version is not directly
integrated into VDE-2 because it uses some features that are specific to GNU/Linux
and can’t be ported to other operating systems like MacOS, meanwhile, VDE-2
must stay compatible with them.
2.1.3.1. VDE-2

VDE-2 [42] is the first and main implementation of VDE. It is all written in the
C programming language [43] and provides multiple command line programs.
ImagiNet only uses a subset of these tools as some of them are replaced by vdeplug4
(see Chapter 2.1.3.2) or are just not implemented in the current version of the
program. The following is a list of what parts of VDE-2 are used by ImagiNet and
how they work:

• vde_switch: This is an implementation of a managed switch. A switch is a
physical (or in this case virtual) device that has multiple interfaces and is able
to forward Ethernet frames between them. It differs from a hub because it
forwards frames based on the destination MAC (Media Access Control) address.

13

A managed switch allows an administrator to modify the configuration like
set VLANs (Virtual Local Area Network) or spanning tree options. If started
normally, the VDE switch has a CLI that allows to configure multiple options
or just print some internal structures like the MAC table. It is also possible to
configure the VDE switch to act as a hub.

Unlike the majority of network simulations presented in Chapter 1.1, the VDE
switch provides a simple and vendor-agnostic management interface. This is a
great approach to learn how to manage a switch in a simple manner, without
being tied to complex, vendor-specific commands. Some network simulation
software relies on powerful tools like the OVS (Open vSwitch) for switch func-
tionality. While OVS is a feature-rich virtual switch, its interface can be quite
complex, especially for beginners without prior experience. A more in-depth
analysis of the interface of this switch is provided in Chapter 3.2.1.

• vdeterm: Multiple VDE devices can be started in daemon mode, which detaches
the process from the current terminal and allows it to run in the background.
When a VDE switch is running in the background, vdeterm can be used to
access his CLI. vdeterm also offers a better CLI experience with features like
autocompletion and command history, which are not built into the managed
devices themselves to keep the rest of the code simple and efficient. To allow
vdeterm to manage a device, that device must expose a management socket,

to which vdeterm can connect to.

• wirefilter: The wirefilter utility can be thought of as a managed cable. It
acts just like a regular network cable, but it provides a dedicated CLI to allow the
user to dynamically change its behaviour. This is incredibly useful for simulating
real-world network conditions by adjusting parameters such as delay, noise, and
packet drop percentage. It can simulate lossy and long-distance connections,
where high latency and packet loss become significant factors. It’s also a great
tool for testing the resilience of new network protocols (like TCP) that need to be
robust against packet loss. It’s important to note that for standard, unmanaged
cables in ImagiNet, the vde_plug utility from vdeplug4 (Chapter 2.1.3.2) is used.
The wirefilter cable is only used when a connection is specifically flagged
with the wirefilter flag.

2.1.3.2. vdeplug4

vdeplug4 [44] is a more recent version of the vde_plug and dpipe utilities
originally found in VDE-2. It is backwards compatible with VDE-2, but this new
version leverages some specific Linux features that would break compatibility with
other operating systems if implemented in the older VDE-2. This new version of

14

VDE brings the possibility to use plugins to be as modular and flexible as possible.
Thanks to the libvdeplug4 is also possible to write new plugins that integrate with
the VDE ecosystem.

vdeplug4 comes with several pre-written plugins that provide implementations for
a hub, an unmanaged switch, and various types of connections. These new hub and
switch plugins are lighter than their VDE-2 counterparts. However, because they
are unmanaged, they do not offer any configuration options and at the moment are
not used by ImagiNet. In regard to the various types of connections, the following
is a list of the ones currently used by ImagiNet:

• vde: This type of connection allows the vde_plug utility to be backwards
compatible with VDE-2. It is used by ImagiNet to connect to VDE switches. This
plugin requires that some device is already listening to the specified endpoint.
This means that it is not possible to start a cable without first starting the switch.

• ptp: This plugin is used to create a peer-to-peer connection between two
devices. It is possible to start listening for a connection from both devices and if
one of them disconnects, the other starts listening to the same endpoint. This is
useful as there is not a predefined order in which two devices need to be started,
unlike for the vde connection type.

• vxvde: This plugin implements VXVDE [45]. This is a VXLAN replacement that
can be used to distribute and create VDE connections over a real network. This
can be used to distribute the virtual laboratory on multiple physical machines.
A laboratory is proposed in Chapter 3.5.1.

The utilities provided by vdeplug4 are used by ImagiNet in the following manner:

• vde_plug: This is used to connect two endpoints together. ImagiNet uses this
utility to create and simulate regular cables (that do not involve wirefilter).
To connect single hosts the ptp plugin is used and the vde plugin is used to
connect to VDE-2 switches.

• dpipe: From the man page: “ dpipe is a general tool to run two commands
diverting the standard output of the first command into the standard input of
the second and vice versa”. This utility is used by ImagiNet to create cables with
wirefilter .

It must be noted that VDE-2 also provides a version of both vde_plug and
dpipe . It is important to install vdeplug4 after VDE-2 to override these versions

with the new ones.

15

2.1.3.3. vdens

vdens [46] is a program written in C that creates a Linux namespace with its own
independent networking stack that is compatible with VDE. It does not require
being root on the system, and the user acquires all the management capabilities
on the networking stack of the namespace. This grants the user with permissions
to to create, remove and configure interfaces that are all connected to one or more
VDE external connections.

ImagiNet uses vdens to simulate a lightweight network node that can be used to
test connectivity with the same utilities that are installed in the host machine (like
ping , traceroute , etc.). It is also possible to use the namespace as a router,

enabling the ip forwarding kernel parameter.

vdens differ from a classic container, like the ones managed by Docker, because it
is substantially simpler and tries to create only a network namespace. This means
that all files and programs from the Linux host are still accessible and usable. This
does not provide isolation from the host, but the code required to run vdens is
much simpler and shorter than a classic container implementation like LXC or
Docker. The isolation is not strictly a security risk because vdens , especially in
the context of ImagiNet, is meant to be used only as a test tool where only safe
code and safe utilities are executed. If some external and untrusted code has to be
tested, a Virtual Machine is highly suggested.
2.1.3.4. libvdeslirp

Slirp, which originally was designed to provide PPP/SLIP connections over termi-
nal lines, has evolved into a versatile TCP-IP emulator. It is now widely used by
virtual machine hypervisors to provide virtual networking without requiring any
host configuration or privileged access. Major virtualization platforms like QEMU,
VirtualBox, and User-Mode Linux all utilize it for this purpose.

The QEMU development team separated their Slirp implementation into a stand-
alone library called libslirp. To bring this functionality to VDE networks, the
libvdeslirp [47] library was written as a wrap of the libslirp code.

By installing libvdeslirp, the user can utilize the slirp plugin with vdeplug4. This
allows virtual hosts to connect to the Internet without needing any special privi-
leges. It is especially useful for virtual machines where new tools must often be
installed.

16

2.2. Declarative configuration
In the “Iron Age” of computer science, systems were tied to physical hardware,
making infrastructure provisioning and maintenance a manual and time-consum-
ing task. Now, in the “Cloud Age”, systems are decoupled from physical hardware.
Automated software handles routine tasks, freeing up system administrators.
Changes can be made rapidly, allowing for faster and more reliable change man-
agement.

Infrastructure as Code (IaC) applies software development practices to IT infra-
structure. It ensures that system provisioning and configuration are consistent
and repeatable by defining changes in code and deploying them automatically
with built-in validation. This methodology allows organizations to leverage pow-
erful software tools like version control systems (VCS), automated testing, and
deployment orchestration to manage their infrastructure. Today, IaC is a universal
practice in cloud environments, making it a standard for any organization that
manages cloud infrastructure [48]. A notable tool that exemplifies this approach
for major cloud providers is OpenTofu [49].

As principles and practices of IaC can be applied to infrastructure whether it runs
on the cloud or is virtualized systems, ImagiNet is designed with this philosophy
in mind.

To define a network topology, ImagiNet uses a single plain-text file that specifies
all the devices and their connections. This approach allows users to effortlessly and
reliably rebuild any topology on any machine configured to run ImagiNet. It also
makes it simple to create, destroy, or replace devices and connections by modifying
just a few lines of code, all without needing to interact directly with the ImagiNet
interface. This approach stands in contrast to tools like GNS3 (Chapter 1.1.1)
and Marionnet (Chapter 1.1.8), which require users to manually create and save
configurations within the program’s graphical interface. ImagiNet is more aligned
with tools like Kathará (Chapter 1.1.5), but instead of defining a its own custom file
format, ImagiNet leverages the widely-used and human-readable YAML format.

YAML (YAML Ain’t Markup Language) is a widely used, human-friendly, data se-
rialization language [25]. It was chosen for its simplicity and widespread adoption,
as well as the availability of pre-written parsers for most programming languages.
This last point allows ImagiNet to check for syntax errors without the need to
develop custom code for a unique custom language.

17

switch: Yaml
 - name: sw1

namespace:
 - name: ns1
 interfaces:
 - name: eth0

 - name: ns2
 interfaces:
 - name: eth0

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: sw1

 - name: conn2
 endpoint_a:
 name: ns2
 port: eth0
 endpoint_b:
 name: sw1
 port: "10"

Listing 4: An example of a topology file for ImagiNet written in YAML. A switch
called sw1 is defined. Two namespaces (ns1 and ns2) with one interface each (called
eth0) are connected with two cables (respectively conn1 and conn2) to the switch.

An example of a configuration file is provided in Listing 4. In this example, a switch
is defined under the switch array. Two namespaces are present and, for each one,
only an interface is declared. To connect two devices, a cable must be written in
its appropriate section. A cable is defined by a name and its two endpoints. In this
example, the cable conn1 connects the eth0 interface of the first namespace (ns1)
to the switch. If a port is not specified, the first free port is chosen by ImagiNet.
For the second cable (conn2), the eth0 interface of the second namespace (ns2)
is connected to the 10th port of the switch.

18

ImagiNet imposes some constraints that can’t be encoded in the YAML language
and must be verified by the application logic. Some of them are:
• Device names must be unique in all the topology
• Interfaces must only have one connection attached to them.
• The switch can’t run out of ports
• If an ip is specified under a namespace interface it must be valid
• If a gateway is specified under a namespace interface it must be valid and inside

the ip subnet
• If a configuration file for a switch or a cable is provided, the file must be readable

Having only a simple plain text file, allows ImagiNet users to define new topologies
without having to rely on the ImagiNet interface itself. To create a new topology
only a simple text editor is needed. It is very easy to share topologies with other
persons or students, and also this format is perfect for version control systems like
Git [50].

2.3. Interface
A command-line interface (CLI) allows users to interact with a software using text
commands, in contrast to a graphical user interface (GUI) which relies on visual
elements. Since CLIs run directly from a terminal, they do not require a graphical
environment. While some users might perceive CLIs as more complex, they offer
a superior combination of simplicity and portability compared to GUIs. Creating
a user-friendly and portable GUI is a significantly more demanding development
task than building a CLI. Furthermore, CLIs tend to have a longer lifespan, whereas
GUIs can quickly become outdated.

ImagiNet was specifically designed as a CLI tool to maximize its portability across
various desktop environments. This design choice also ensures it can be used
on computers that lack a graphical interface entirely. For a detailed overview of
ImagiNet’s current CLI interface, the reader can refer to the resource provided in
Listing 5.

The ImagiNet CLI has several groups of commands:

• Topology: This sets of commands are used to create, destroy and manage
topologies. This set includes:

19

Create and manage VDE topologies

Usage: imaginet [OPTIONS] [COMMAND]

Commands:
 add Add a device to the current topology
 attach Attach to a device in the topology
 create Create a topology from a yaml configuration
 clear Stop and delete the current topology
 dump Dump current raw configuration
 exec Execute a command in a device
 import Import a topology from a raw configuration file
 (generated with dump)
 rm Remove a device from the topology
 start Start devices in the current topology
 status Status of running topology
 stop Stop devices in the current topology
 help Print this message or the help of the given subcommand(s)

Options:
 -b, --base-dir <BASE_DIR> Base directory for all imaginet files
 -t, --terminal <TERMINAL> Terminal to open when starting or
 attaching to a device
 -c, --config <CONFIG> Path to global configuration file
 -v, --verbose... Verbosity level. Can be used multiple
 times for increased verbosity
 -h, --help Print help
 -V, --version Print version

Listing 5: ImagiNet CLI

‣ create : This command initiates the creation of a network topology based
on a specified topology file. If no file is provided an empty topology is created.
This command is typically the first step, used to establish a network scenario
that can then be interacted with and managed.

‣ clear : At the time of writing, ImagiNet is able to manage only one topology
at a time. If a topology was already created and another has to be created, this
command will remove all the ImagiNet files and clear the current topology. It
also attempts to stop any devices that are still running.

20

‣ add : After creating a topology from a file, is possible to add a device without
the need to modify the topology file and without the need to stop and recreate
the entire topology from scratch.

‣ rm : This command is the opposite of the add and will remove a device from
the current active topology.

‣ dump : When devices are added or removed using the add or rm com-
mands, the active topology no longer matches the original topology file. To
save the current modified topology to a file, the dump command can be used.
This command prints the internal representation of the topology in a format
that can be imported later using the import command. It’s important to note
that ImagiNet’s internal representation for the active topology differs from
the format used in the initial topology files for the create command. As of
now, the dump command cannot generate a file compatible with the original
topology file format.

‣ import : This command takes the output generated by the dump command
as input and uses it to recreate a saved topology

• Management: This set of commands are used to manage the running topology.
This set includes:

‣ start : This command accepts a list of device names to be started. If
no devices are specified, the entire topology will be started. When starting
namespaces, a new terminal window is launched, which requires a graphical
desktop environment. However, if no graphical environment is available, the
--inline flag can be used to start a namespace directly in the current

terminal. This command is also idempotent, meaning it will not attempt to
start a device that is already running.

‣ stop : This command attempts to stop a specified device. It is an idempotent
command, meaning it does nothing if a device is already stopped.

‣ status : This command prints a brief status of the topology. The status
includes which devices are defined and their state. There is a verbose flag that
allows to print of all the configuration options of the devices.

• Interaction: This set of commands are used to interact with the current devices
in the topology. This set includes:

‣ exec : This command is used to execute a command with arguments inside
a device.

21

‣ attach : For some devices, like switches and cables with wirefilter , the
CLI interface is not automatically opened by ImagiNet. To interact with them
the user must attach to them with this command. It is also possible to open
multiple terminals inside the same namespace.

2.4. Rust
Since all the VDE tools are written in C, to be consistent, it would have been
possible to use the same language for ImagiNet. However, a more modern, high-
level language was chosen instead, because ImagiNet doesn’t require a large
number of system calls or deep interaction with the core system, while it requires
a lot of parsing that is more challenging in low-level languages like C. Python was
considered for this project, but its lack of a type system and its interpreted nature
were considered unsuitable for the tool’s requirements.

The Rust programming language [51] was chosen for writing ImagiNet. It offers
a powerful type system and is a compiled language, which provides significant
performance benefits and allows for more error checks at compile time rather than
at runtime. It also has pattern-matching capabilities, which are ideal for handling
and parsing command-line arguments. Another convincing feature of Rust is its
memory safety. The language is designed to prevent an entire class of bugs and
vulnerabilities related to memory management at compile time, such as buffer
overflows and use-after-free errors [52].

Rust’s type system allows for the definition of custom data structures that inter-
nally represent different types of devices, complete with their own methods. A
code snippet from the src/vde/namespace.rs file in the ImagiNet repository
is reported in [53]. In this code, a Namespace structure is defined, containing
a name, a vector of interfaces, and a vector of configuration commands. The
NSInterface type has only the name field that is mandatory, meanwhile, the
ip field is defined using the Option enum. This allows the value to be either
Some(value) , indicating that a value is present, or None , indicating its absence.

For example, when an interface’s IP address is not specified, its ip field is set to
None . If the interface is configured with the IP address 192.168.1.1 , the value

⁵This notation is not really valid in Rust since the "..." encodes a static string while in the
ip definition there is a String type.

22

pub struct Namespace { Rust
 name: String,
 interfaces: Vec<NSInterface>,
 config: Vec<String>,
}

pub struct NSInterface {
 name: String,
 ip: Option<String>,
 gateway: Option<String>,
}

Listing 6: A snip of the Namespace and Namespace interface definition types used
in ImagiNet

would be Some("192.168.1.1") ⁵. This eliminates the need for null values and
makes the presence or absence of data explicit in the type system.

Rust also has a Result<...> type that can be Ok(..) or Err(...) . This
allows functions to return only a result type that encodes both the correct value or
an error with details. The caller can use pattern matching on the result and handle
all the errors that have occurred. We believe this explicit error-handling approach
is superior to the exception-based models found in languages like Python.

To interact with VDE and start a topology, ImagiNet does not rely on any
VDE library directly, but it just executes the VDE utility commands as external
programs. This design choice allows a new version of a VDE utility to be released
and immediately integrated into ImagiNet without the need to recompile or update
the code.

2.5. Stateful without a service
ImagiNet needs to be stateful in the topology that it manages as subsequent
commands have to operate on the same active topology. For example, if a user
starts a device, a subsequent call to the status command should display the device
as active.

To keep track of the current state of the application, the majority of the network
simulation tools rely on themselves being active throughout the duration of the

23

simulation. Some of them, instead of being always active, interact with a daemon
that keeps track of the state of the simulation in the background. For example,
GNS3 relies on its daemon, while Kathará does not have its daemon but relies on
Docker, which in turn relies on the Docker daemon to keep track of the container’s
lifetime.

ImagiNet was designed with a new approach in which the state of the topology
is written on the filesystem of the host and no daemon of any sort is involved.
By default, ImagiNet has a working directory located in /tmp/imnet/ where it
writes the topology file that describes the internal representation of the current
active topology. Then, for each device, a new directory is created where the
necessary sockets and pid files are placed. For each call to the ImagiNet CLI, the
topology file is parsed and for the status of each device, the process pointed by
the pid file is checked. Every VDE component (except for vdens) can be run as
a background process and can generate a pid file that holds the process pid. This
is used by ImagiNet because a device is considered active if the process associated
with the device pid is running. For vdens a custom initialization script is imple-
mented that is used to configure the namespace and write the pid of the process.

This design approach allows ImagiNet to avoid running continuously and con-
suming resources. Since topology management is only a small part of the overall
simulation process, the performance overhead of parsing the topology file is
negligible.

2.6. Keeping it simple
ImagiNet was designed to be as simple as possible while still being capable of simu-
lating complex topologies. The namespaces are based on vdens (Chapter 2.1.3.3)
and although they provide a very lightweight PC simulation to test connectivity,
simple routing and firewall rules, they can restrict the ability to run multiple
instances of the same program or daemon. Furthermore, a user may be unable to
run a specific program because the namespace does not provide root privileges
(despite the user inside the namespace having all the capabilities necessary to
manage the network configuration). In fact, some applications simply check if the
user is root rather than checking for the necessary capabilities.

24

For more complex scenarios where a fully isolated host is required, a virtual
machine (VM) must be used. We decided not to integrate VM management directly
into ImagiNet to avoid increasing the project’s complexity. Virtual machines can
be created using various hypervisors and involve a significant number of config-
uration options that are outside the scope of ImagiNet’s core purpose. VMs can
also be created manually using an Infrastructure as Code (IaC) tool like Vagrant
[54], which aligns with ImagiNet’s design philosophy.

To enable users to integrate virtual machines (VMs) with ImagiNet, a new type of
connection was implemented that exposes an endpoint to connect external tools
that are compatible with VDE. This type of connection is called “open” and means
that ImagiNet does not care what is attached to it and delegates this responsibility
to the user. An example of an open connection is in Listing 7, where a simple
namespace is connected with a cable to an open endpoint.

The path of the open endpoint can’t be safely determined before running ImagiNet
because it is based on the base working directory that can be configured. This
means that after writing a topology with an open connection, the topology must
be created into ImagiNet with the create command and then the endpoint of
the connection can be printed with status -v as shown in Listing 8.

The endpoint_b is the open endpoint and it exposes a ptp connection. This is
a plugin found in vdeplug4 (Chapter 2.1.3.2) that allows the creation of efficient
peer-to-peer connections between two devices. We now present a simple way to
attach a QEMU VM to the endpoint. Other tools can be used as long as they are
compatible with vdeplug4. In Listing 9 is reported a QEMU command to start a

namespace: Yaml
 - name: ns1
 interfaces:
 - name: eth0

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: open1
 open: true

Listing 7: Example of a topology file with an open connection

25

Cables:
- conn1 inactive
 endpoint_a: PTP ./ns1/eth0 eth0
 endpoint_b: PTP /tmp/imnet/opn/open1
 wirefilter: false

Listing 8: Example of an open connection cable listed with the status command
and the verbose (-v) flag.

qemu-system-x86_64 -enable-kvm -cdrom alpine.iso \ bash
 -monitor stdio -device e1000,netdev=vde0 \
 -netdev vde,id=vde0,sock=ptp:///tmp/imnet/opn/open1

Listing 9: Qemu command to start a VM based on Alpine attached to a PTP VDE
endpoint

simple VM based on an image of Alpine Linux [55] that has an interface attached
to the open connection endpoint_b .

We have presented the open connections as a way to attach a VM to the current
topology managed by ImagiNet, but as it is a simple VDE endpoint the user can
leverage it in any way he wants. In fact, not all features of VDE are present
in ImagiNet and in this way, some of them can be integrated. This allows for
maximum flexibility and integration with third-party tools, unlike most of the
network simulation software presented in Chapter 1.1.

2.7. Real word experience
Some network simulation software sacrifices realism for the sake of user conve-
nience, which we believe can be confusing for students new to network adminis-
tration. For instance, GNS3 (Chapter 1.1.1) allows the user to place Wireshark in
the middle of a cable between two devices. In reality, Wireshark is almost always
placed on one of the end hosts. Similarly, Kathará (Chapter 1.1.5) doesn’t treat
cables as separate entities, preventing users from simulating a cable fault by simply
“destroying” it.

In contrast, ImagiNet was developed to mimic the design and management of
real-world networks. Each device operates as a standalone entity, independent
of others. This means the user can, for example, keep a namespace running

26

while rebooting a switch. Moreover, all cables are treated as independent entities,
allowing the user to activate or deactivate them to simulate faults without needing
to modify any other devices in the topology.

2.8. Performance
The following sections will present some benchmarks that can help the reader
understand how ImagiNet performs and how the created VDE topology performs.

All tests were done on an Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz with
16GB of RAM.

2.8.1. ImagiNet performance
Aside from starting the actual devices, which is a part not strictly related to how
ImagiNet performs, the most challenging task is to parse the topology file provided
and create a topology. During the parsing of the topology, a large number of checks
need to be performed to make sure that multiple endpoints are not used more
than once or that devices (like switches) do not run out of ports. These checks are
mandatory because if, for example, in the topology, a switch with 8 ports has 9
devices attached, when starting all the devices, the 9th one will report an error
that is cryptic to the user. ImagiNet tries to avoid errors by first checking that the
topology can be safely created.

We don’t expect users to simulate massive topologies with ImagiNet. The com-
plexity of managing numerous devices grows significantly, and most educational
objectives can be achieved with smaller, more manageable networks. However,
for testing purposes, we decided to create a progressively larger topology to test
ImagiNet parsing performance. To create a very large topology we wrote a script
that is reported in Appendix A. The topology generated by the script is in two
parts: the first part is a block that contains multiples switches with multiple
namespaces attached to them and a router that is connected to all the switches.
The block can be viewed in the Figure 2 figure. The second part of the generated
topology connects every router from every block to all the other routers in a mesh
topology as shown in figure Figure 3.

Every switch in the block has its own subnet, defined as 10.{n}.0.0/16 where
n i the number of the switch in the block. The router has an interface for all

27

Figure 2: Block diagram generated

Figure 3: Routers mesh topology

the switches and other m interfaces for the connection to other routers in other
blocks.

To evaluate ImagiNet’s parsing performance, four different topologies were used
to conduct tests. The script used to generate the topology has three parameters that
can be customised to control the size of the network. The first one is the number of
namespaces per switch. This factor dictates how many namespaces are generated
for every switch in a block. The second parameter is the number of switches per
block. The third one is the number of blocks. The parameters used for all the tests
are reported in Table 1. The total number of devices in the generated topologies is
reported in Table 2.

After generating the topology files and placing them in /tmp/topo{n}.yml ,
hyperfine [56] was used to evaluate performance. The command in Listing 10

28

Topology Namespaces per switch Switches per block Blocks
topo0.yaml 4 4 4
topo1.yaml 8 8 8
topo2.yaml 16 16 16
topo3.yaml 40 16 20

Table 1: Parameters used to generate test topologies

Topology Namespaces Switches Cables
topo0.yaml 68 16 86
topo1.yaml 520 64 604
topo2.yaml 4112 256 4472
topo3.yaml 12820 320 13310

Table 2: Total number of devices per topology

will first remove the ImagiNet working directory⁶ and then run the create

command for the topology file.

hyperfine -N --warmup 3 --parameter-scan t 0 3 \ bash
 --prepare 'rm -rf /tmp/imnet' 'imaginet create /tmp/topo{t}.yaml'

Listing 10: Command used to test ImagiNet parsing

Table 3 reports the results of the benchmarks. ImagiNet, even for extremely large
topologies, performs really well. The smallest topology test has an amount of 170
objects and takes under 5 milliseconds to complete the parsing and creation of the
topology. This means that the running time of ImagiNet on normal topologies is
negligible and the user should not be impacted by it in any way.

Topology Mean (ms) Min (ms) Max (ms) Relative
topo0.yaml 4.6 ± 0.8 3.0 5.8 1.00
topo1.yaml 18.7 ± 0.5 17.9 19.6 4.10 ± 0.71
topo2.yaml 286.1 ± 6.8 273.2 292.0 62.79 ± 10.83
topo3.yaml 2482.4 ± 65.4 2353.2 2577.9 544.67 ± 94.15

Table 3: Benchmark summaries

⁶This is done because if create finds an already created working directory it will stop. If the
--force flag is passed to it, ImagiNet will try to parse the old topology and stop all devices

before creating the new one.

29

2.8.2. Topology performance
ImagiNet was not designed to create the most efficient topology. This design choice
was made because efficient VDE topologies would impose some constraints on
device interactions from the user’s perspective. The most simple example of this is
a namespace (vdens) attached to a switch (vde_switch). The most efficient way
to connect the namespace to the switch would be to create a VDE connection di-
rectly. To do this a vde_switch must be started with vde_switch -s /tmp/sw
and a namespace attached to it with vdens vde:///tmp/sw . In this case, the
switch will open a socket and listen to incoming connections, the namespace will
connect to the switch via the socket and they will start exchanging packets. The
problem with this scenario arises when the switch must be restarted. If the switch
is restarted the listening socket is dropped, and all connections previously estab-
lished with other devices are dropped. From the namespace perspective, nothing
happens, except that now all packets sent over the VDE interface do not reach
any destination. If the switch is restarted, even with the same parameters, the
namespace has no way to connect back to it but reboot. ImagiNet was designed
to be as realistic as possible with how real world networks function, and in a real
world network, a switch can be restarted without the need to restart all the devices
attached to it. Furthermore, from the user’s perspective, the only two processes
involved were the switch and the namespace. No cables are directly involved
because the cable is coupled with the namespace. As a result, users cannot simulate
a cable fault by simply turning it off.

To address this limitation, ImagiNet makes extensive use of the ptp connections
available in vdeplug4 (Chapter 2.1.3.2). In the scenario described, ImagiNet would
start the switch and the namespace, but it would create a ptp endpoint for the
interface. Then, it would launch a separate process for the cable, connecting the ptp
endpoint to the switch. This design allows the switch to rebooted without restating
the namespace. Only the cable needs to be restarted, and since the cable holds no
configuration, this can be done easily. This design choice allows for a more realistic
network simulation, but it brings a small cost as now more processes are involved.
In the previous, more efficient scenario, only two processes were used; now, three
are involved, as there is a dedicated process for the cable. This also adds more hops
for packets as it travels between more sockets. It’s important to note, however,
that this performance trade-off is solely due to the way cables are managed. The
namespaces and switches are still configured in the most efficient way possible.

To evaluate the performance impact of this design choice, we tested three specific
topologies. A fourth, medium-to-large topology was also included to assess perfor-
mance in a network that would be difficult to manage without a tool like ImagiNet.

30

Figure 4: Efficient topology n.0

Figure 5: ImagiNet topology n.0

For all topologies, we measured the performance loss by measuring bandwidth
using iperf3 ([57]) and latency using ping .

The first topology is composed of two namespaces connected to each other.
Appendix B.1 reports the commands used to generate the most efficient topology,
while Appendix B.2 reports the ImagiNet topology file. In Figure 4 the efficient
topology is presented, while in Figure 5 the ImagiNet topology is presented.

The second topology is composed of four namespaces connected sequentially as
shown in Figure 6. The ImagiNet counterpart is shown in Figure 7. The first and
the last namespaces are in different subnets and the middle ones are configured to
route traffic between them. The commands used to generate the efficient topology
and the ImagiNet topology file can be found in Appendix B.3 and Appendix B.4.

The third topology is composed of three switches and three namespaces as
shown in Figure 8. VLANs are configured in the middle switch to separate traffic
between the other two switches. All the commands used to generate the topology
can be found in Appendix B.5, while the ImagiNet topology file can be found in
Appendix B.6

In Table 4 are reported the iperf3 tests across the three different topologies.
In the last column is reported the performance loss in percentage. In Table 5 are
reported the ping tests.

Figure 6: Efficient topology n.1

Figure 7: ImagiNet topology n.1

31

Figure 8: Topology n.2

Topology Efficient (Mbit/s) ImagiNet (Mbit/s) Loss
Topology 0 2900 2340 19.31
Topology 1 1460 1190 18.49
Topology 2 1170 806 30.77

Table 4: Iperf3 benchmarks

Topology Avg e. (ms) Mdev e. (ms) Avg I. (ms) Mdev I.
Topology 0 0.389 0.099 0.815 0.095
Topology 1 1.065 0.188 1.760 0.314
Topology 2 1.946 0.133 2.585 0.711

Table 5: ping benchmarks. Avg stands for average, Mdev stands for mean devia-
tion, e. stands for efficient and I. stands for ImagiNet

A last topology is presented to report performance across a medium-sized
topology that is relatively large to build by hand. The topology is illustrated in
Figure 9 and the ImagiNet file can be found in Appendix B.7. To test this topology
iperf3 was run simultaneously from the two namespaces on the left to the two

namespaces on the right. The average bandwidth reported was 412 Mbit/s for
the first namespaces and 416 Mbit/s for the second ones.

While other tools may offer superior performance, we believe the topologies
generated by ImagiNet are more than efficient enough for nearly all of its intended
applications. The simulation carried out by VDE, which occurs entirely in user
space, is not the most performant method: tools that leverage the kernel network
stack for simulation achieve better results. However, this user-space approach is
a core feature of ImagiNet, as it does not require any special user privileges to

32

Figure 9: Topology n.3

run. This is a crucial benefit for a learning tool. The performance difference does
not significantly impact its educational purpose, and in fact, the results for many
performance tests are still quite positive.

33

34

Learning by doing
The learning by doing teaching method is a hands-on, task-oriented process that
places learners as active participants in real-world experiences. It’s based on
the idea that students learn best by turning experiences into knowledge [58]. A
computer network course can benefit from this approach by utilising network
laboratories, where students will have direct experience with network scenarios
and problem troubleshooting. Using a virtualisation technology to perform these
laboratories can be cost and time-saving. As the laboratories are all simulated and
no actual networking hardware is required, the maintenance of real equipment is
removed, and also the restoration of the initial state of the laboratory can be simply
carried out by a reset of the simulation program. From the pedagogical point of
view, student interactions with a virtualised networking laboratory are practically
the same as the interactions they would have with a real network. Furthermore,
by parameterising the settings of the virtual network scenario, each student can
be assigned a unique, personalised network that is different from their peers’. This
method is effective for class sizes ranging from 100 to 400 students. Experiments
on teaching computer networks using this approach have reported very positive
results. The majority of students who participated felt they learned more through
these exercises than they would have with more traditional methods [59], [60].

The following chapter presents a series of laboratories and exercises designed to
teach a subset of networking topics for a university computer network course. At
the end, the reader should have a clear understanding of how ImagiNet can be
used by students and teachers for hands-on network teaching.

35

3.1. Networking basics
In theory, a computer networking course should be independent of a specific
vendor’s equipment or operating system. However, to complete the following
laboratory exercises, students will need to use a small subset of commands specific
to GNU/Linux and VDE. We believe the comprehensive benefits of these labs
outweigh the minimal effort required to learn these commands. Furthermore,
while the Linux commands will be universally useful in any professional context,
the VDE commands are vendor-neutral, and their logic can be easily translated to
other vendors’ equipment.

3.1.1. Lab 0
This laboratory exercise is designed to familiarise students with essential com-
mands for managing network interfaces and IP addresses on GNU/Linux systems
using the iproute2 [61] package. The laboratory utilises the same network topology
employed in the performance evaluation chapter, with a graphical representation
provided in Figure 5. To ensure a clean learning environment, the ImagiNet
topology file is presented without any pre-existing configuration, as shown in
Appendix C.1.

Students participating in this laboratory should possess fundamental knowledge
of: Internet Protocol (IP) addressing principles, Network masking concepts and
CIDR (Classless Inter-Domain Routing) notation for representing IP addresses and
subnet masks.

At the end of this laboratory, students will have gained a practical understanding
of:
• The role of IP addresses and subnet masks in network communication.
• ICMP (Internet Control Message Protocol) [62] functionality and the specific

Echo Request, Echo Reply packet types.
• ARP (Address Resolution Protocol) [63] mechanisms and their role in Layer 2/

Layer 3 communication.
• TCP (Transmission Control Protocol) [64] connection establishment through the

three-way handshake process.
• Analysis of network protocols using Wireshark [65].

This laboratory is organised into three distinct parts, each focusing on specific
concepts while utilising the same underlying topology. In the first part, students
will learn to configure network interfaces with appropriate IP addresses and
conduct basic connectivity testing using the ping utility. In the second part,
students will be familiarised with Wireshark for packet analysis, and they will

36

experience the IP-to-MAC address resolution process through ARP. The final part
focuses on testing TCP connectivity using netcat and analysing TCP protocol
behaviour through Wireshark.
3.1.1.1. Interface configuration and connetivity test

To begin the laboratory exercise, students must first download the topology file
referenced in Appendix C.1. The students must then proceed to create and start
the topology using ImagiNet.

After the topology is started, two terminal windows will be visible, each corre-
sponding to a distinct namespace within the topology. To distinguish the two
terminals, students can observe the hostname displayed in each terminal’s shell
prompt. An example of the shell prompt is shown in Listing 11.

user@ns1:~$ bash

Listing 11: Example of a shell prompt for a namespace

Students are now able to print the current status of the namespace interfaces.
To do that, the first command from the iproute2 packet should be introduced:
ip address . An example of an output of this command is reported in Listing 12.

In this output, there is a large amount of data, but only the important information
is pointed out:

• There are two interfaces: the loopback interface (lo) is a virtual interface that
lets the machine talk to itself. The eth0 interface is the actual “physical” net-
work interface that allows communication with other network devices attached
to it.

• The lo interface has the loopback IP address configured: 127.0.0.1/8 for
IPv4 and ::1/128 for IPv6. The eth0 interface does not have any IP address
configured yet.

• The eth0 interface has a MAC address of 22:d2:46:1e:39:2e , while the
loopback interface has a special MAC address.

Since the theoretical aspects of networking should be covered by the course
professor and multiple textbooks, no explanations of networking concepts are
provided in these laboratory exercises. This and the following labs will focus
solely on the practical implementation and observation of selected networking
topics. If any topic is not well understood, we refer students to two textbooks that
comprehensively cover the relevant theory [1], [2].

37

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default qlen 1000

bash

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host proto kernel_lo
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
default qlen 1000
 link/ether 22:d2:46:1e:39:2e brd ff:ff:ff:ff:ff:ff

Listing 12: Output of the ip address command on an unconfigured namespace

Students should now try to configure the interface in both namespaces with two
IPs that are on the same subnet. To add an IP address to an interface, the command
ip address add <ip> dev <interface> can be used. It must be noted that

the <ip> parameter has to be in CIDR notation, otherwise the netmask will
automatically be /32 . After picking two IPs (in this example, 10.0.0.1/24 and
10.0.0.2/24 are chosen) and after adding them to the appropriate interface,

students can verify their operations by displaying again the interface’s status
with the ip address command. A partial example is reported in Listing 13,
where the 10.0.0.1/24 IP was assigned to the eth0 interface with the
ip address add 10.0.0.1/24 dev eth0 command.

2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
group default qlen 1000

bash

 link/ether 22:d2:46:1e:39:2e brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.1/24 scope global eth0
 valid_lft forever preferred_lft forever

Listing 13: Output of the ip address where lo is omitted. The eth0 interface
has an IP address

The last step that students must carry out to enable communication between
the two namespaces is to bring both interfaces into the UP state. To do this, the
command ip link set <interface> up can be used. For both namespaces, stu-
dents should run ip link set eth0 up . It must be noted that, for namespaces,
the interface never becomes UP, but changes its state to UNKNOWN. Students can
now verify that the interface has changed state with the ip address command,
as shown in Listing 14. Students should also notice that now eth0 has an IPv6
link-local address too.

38

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
fq_codel state UNKNOWN group default qlen 1000

bash

 link/ether 22:d2:46:1e:39:2e brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.1/24 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::20d2:46ff:fe1e:392e/64 scope link proto kernel_ll
 valid_lft forever preferred_lft forever

Listing 14: Output of the ip address where lo is omitted. The eth0 inter-
faces is now UP.

Students are now able to test the connectivity between the two namespaces with
the ping tool. This tool allows sending ICMP Echo requests to an IP address
specified as an argument and tracking ICMP Echo replies. If students execute the
command ping 10.0.0.2 on the first namespace, an output similar to Listing 15
should be printed. It must be noted that the ping command does not terminate
by default. The Ctrl+C keyboard combination must be entered to stop it. The
64 bytes ... lines mean that the other namespace is replying to the echo

request.

user@ns1:~$ ping 10.0.0.2 bash
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.774 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.389 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.679 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.580 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.610 ms
^C
--- 10.0.0.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4088ms
rtt min/avg/max/mdev = 0.389/0.606/0.774/0.127 ms

Listing 15: Example of the ping command

Students can now experiment by pinging unassigned IP addresses, attempt-
ing to ping the IP address of the other namespace after bringing down
its interface using ip link set eth0 down , or deleting the second name-
space IP address and assigning an IP address to it that is not within
the same subnet as the first. To delete an IP address, the command
ip address delete <ip> dev <interface> can be used. To delete all IP ad-

dresses on an interface, the ip address flush dev <interface> can be used.

39

3.1.1.2. Wireshark and ARP

The second part of this laboratory focuses on packet capture, analysis, and ARP.
Observing the actual packets flowing through the wire and examining their con-
tents is one of the most effective ways to understand how networking protocols
operate. Starting with this lab, there will be a strong emphasis on observing which
packets are generated and which are received during each operation.

Assuming students are working with a pre-configured topology where the two
namespaces can successfully ping each other, they can begin capturing packets
using Wireshark. Wireshark is a free and open-source packet analyser available on
most operating systems. It requires a graphical user interface (GUI) to operate. If a
GUI is not available, the terminal-based alternative, tshark , can be used instead.
Official Wireshark documentation can be found on its website [65].

To launch Wireshark within the first namespace, students can run the following
ImagiNet command: imaginet exec ns1 wireshark . Once Wireshark is open,
students should select the appropriate network interface (eth0) to begin captur-
ing packets.

While Wireshark is actively capturing, students should initiate a ping from one
namespace to the other. This allows them to observe the packets flowing through
the interface in real time. ICMP packets will appear in the capture: the namespace
sending the ping will generate ICMP Echo Request packets, and the receiving
namespace will respond with ICMP Echo Reply packets.

This provides students with a clear view of all the protocols involved in the
communication: from the Ethernet frame to the IP header and finally to the ICMP
packet. They should examine the Ethernet frame to identify the MAC addresses of
both namespaces and the IP header to see the source and destination IP addresses.

Students may also notice the presence of ARP packets during communication.
They should analyse these, especially the destination MAC address in the Ethernet
frame of the ARP requests, which should be a broadcast address. In the corre-
sponding ARP reply, students can observe the resolved MAC address returned by
the target device.

To manually generate an ARP request, students can use the arping tool. For
example, to resolve the IP address 10.0.0.2 to its corresponding MAC address,
they can run arping 10.0.0.2 .

Each namespace maintains an ARP table, which stores IP-to-MAC address
mappings. To view the ARP table, students can use the ip neighbour

40

command. It is also possible to flush the ARP table of an interface with the
ip neighbour flush dev <interface> command.

3.1.1.3. TCP basics

One of the most important protocols used on the Internet is the Transmission
Control Protocol (TCP). TCP enables the reliable transmission and reception of
data, ensuring that information is delivered accurately and can withstand issues
such as packet loss or network errors. While TCP is a large and complex protocol,
some of its fundamental behaviours can be observed in this laboratory.

Assuming students are using the same pre-configured topology, where the two
namespaces can successfully ping each other, they can initiate a TCP connection
using the netcat utility. On one namespace, students can start a “server” that
listens on a port with the following command: nc -vlkp <port> . On the other
namespace, they can connect to this server using: nc -v <ip> <port> . Once the
connection is established, students can test it by typing some text into one terminal
and pressing Enter . The text should appear on the other end, confirming that
the connection is working properly.

If these actions were performed while Wireshark was actively capturing traffic,
students can now analyse the entire TCP stream. They should observe the typical
three-way handshake that initiates a TCP connection: SYN, SYN-ACK, ACK.
Following this, a series of PUSH-ACK and ACK packets are exchanged as data
is transmitted. If the connection was properly closed, students should also see
FIN-ACK packets marking the termination of the session. Additionally, the actual
text exchanged during the connection should be visible within the captured TCP
packets.

3.1.2. Lab 1
The second laboratory uses the same topology as the first one, except this time
the cable is simulated using wirefilter . As the ImagiNet topology file is almost
identical, we only provide how to modify the cable in Appendix C.2

Wirefilter is used to simulate network perturbations on a wire. The delay can be
modified, the noise, the packet drop percentage and much more. To manage all the
wirefilter options, students must attach to its CLI. To do that, the following

ImagiNet command can be used: imaginet attach conn1

We assume that the topology, although it is a different lab, is already configured to
allow the namespaces to ping each other. If the teacher does not want the students
to reconfigure IP addresses on both interfaces, the topology file for ImagiNet can
be changed, and IPs can be added for each namespace. In this way, when the lab is

41

started, everything is already configured. A practical example of how this can be
achieved is already provided in Appendix B.2.

Students, to start familiarising with wirefilter , should ping one namespace
from the other and start experimenting with some configuration commands like
the delay and dup . Students can increase the delay with delay <ms> and
the duplication percentage with dup <percentage> . On the output of the ping
command, something like Listing 16 should be visible.

user@ns1:~$ ping 10.0.0.2 bash
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.256 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.815 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=401 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=401 ms (DUP!)
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=402 ms
^C
--- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, +1 duplicates, 0% packet loss,
time 3053ms
rtt min/avg/max/mdev = 0.256/201.085/401.927/200.549 ms

Listing 16: Example of the ping command when using wirefilter
3.1.2.1. TCP and UDP on lossy connections

TCP is substantially different from UDP (User Datagram Protocol) as a transport
protocol because it ensures that all data arrives at the destination without loss. To
demonstrate this difference, two scripts have been provided: one for the client and
one for the server, referenced in Appendix C.3 and Appendix C.4. These scripts are
designed to simulate a simple communication system: the server listens for TCP
or UDP connections, and the client connects to it. The client sends the number 1
every second. Both the client and server maintain a counter that starts at zero and
increments each time a 1 is sent or received.

Students should run the server in one namespace and the client in the other. It
is recommended to begin with a TCP connection and then test the same setup
using UDP. Initially, wirefilter has all parameters set to default values, and
both client and server counters should remain synchronised. Next, students can
use the loss <percentage> command in wirefilter to introduce artificial
packet loss. For TCP, even if the server’s counter temporarily stops increasing due
to dropped packets, it will eventually catch up and resynchronize with the client

42

once the loss is removed. This behaviour can be observed by introducing a packet
loss rate of 50% to 80%, then reducing it back to 0%.

In contrast, for UDP connections, any dropped packets are permanently lost. As
a result, the server will not be able to keep its counter in sync with the client’s.
Even a relatively low packet loss rate of 5% to 10% is enough to demonstrate this
behaviour.
3.1.2.2. TCP performance

Another important set of experiments students can perform involves analysing
TCP bandwidth in relation to packet loss and network delay between two
endpoints. To measure TCP performance, the use of the iperf3 [57] utility is
recommended.

To start an iperf3 server on one namespace, students should use the
iperf3 -s command. To start the client from another namespace, students

should use the iperf3 -c <ip> command. To extend the duration of the test,
the -t <seconds> option can be added.

Both delay and packet loss significantly impact TCP performance. To observe
this, students should start an iperf3 session and modify these parameters using
wirefilter . We recommend using small values for delay and loss, as even minor

changes can drastically reduce throughput, sometimes down to 0 Bytes/s.

An example of this behaviour is shown in Listing 17, where setting the delay to
just 1 ms results in a noticeable performance drop.

user@ns1:~$ iperf3 -c 10.0.0.1 bash
Connecting to host 10.0.0.1, port 5201
[5] local 10.0.0.2 port 58648 connected to 10.0.0.1 port 5201
[ID] Interval Transfer Bitrate
[5] 0.00-1.00 sec 119 MBytes 995 Mbits/sec
[5] 1.00-2.00 sec 152 MBytes 1.28 Gbits/sec
[5] 2.00-3.00 sec 81.4 MBytes 682 Mbits/sec
[5] 3.00-4.00 sec 68.1 MBytes 571 Mbits/sec
[5] 4.00-5.00 sec 85.2 MBytes 715 Mbits/sec
- -
[ID] Interval Transfer Bitrate
[5] 0.00-5.00 sec 506 MBytes 848 Mbits/sec
[5] 0.00-5.00 sec 504 MBytes 845 Mbits/sec

Listing 17: Example of an iperf3 test when delay change on wirefilter

43

3.2. Switching and VLANs
In this section, a new type of network device is introduced: the switch. Within
ImagiNet, switch simulation is handled using the VDE switch. A more detailed
overview of its command-line interface can be found in Chapter 3.2.1.

The following labs will help students understand how a switch operates, how it
differs from a hub, and how to configure and manage VLANs to separate layer 2
broadcast domains.

3.2.1. VDE switch interface
The VDE switch offers a clear, vendor-neutral interface that is perfect for learning
how to manage switches and configure VLANs. Unlike vendor-specific interfaces,
which involve proprietary command sets and much steeper learning curves, the
VDE switch offers a simplified and plain approach, focused more on the core
switch functionalities, making it especially well-suited for educational environ-
ments.

A subset of commonly used commands is shown in Listing 18. One of the most
useful features of the VDE switch is the ability to inspect the internal MAC address
table, which reveals how the switch associates MAC addresses with specific ports.
This functionality helps clarify how switches learn and forward Ethernet frames
as opposed to hubs. The hash/print command displays the entire hash table,
as reported in Listing 19, while the hash/find command can locate the port
associated with a specific MAC address.

Managing VLANs is also straightforward. New VLANs are created using the
vlan/create <vid> command. Ports can be assigned to VLANs in untagged

mode with port/setvlan <port> <vid> , and to configure tagged VLAN mem-
bership, the vlan/addport <vid> <port> command is used. VLANs can also be
listed and removed through corresponding commands.

Although the command-line interface differs from those found in commercial
devices, the VDE switch has all the essential capabilities for managing Layer 2
broadcast domains.

3.2.2. Lab 2
This laboratory is designed to understand how switch operates, how they differ
from hubs, and how Ethernet frames are forwarded. The topology file for this
laboratory is available at Appendix C.5, and it defines three namespaces that are
connected to a single switch.

44

COMMAND PATH SYNTAX HELP
------------ -------------- ------------
help [arg] Help (limited to arg when
specified)
logout logout from this mgmt terminal
shutdown shutdown of the switch
showinfo show switch version and info
hash ============ HASH TABLE MENU
hash/showinfo show hash info
hash/setexpire N change hash entries expire time
hash/print print the hash table
hash/find MAC [VLAN] MAC lookup
port ============ PORT STATUS MENU
port/showinfo show port info
port/sethub 0/1 1=HUB 0=switch
port/setvlan N VLAN set port VLAN (untagged)
port/print [N] print the port/endpoint table
port/allprint [N] print the port/endpoint table
 (including inactive port)
vlan ============ VLAN MANAGEMENT MENU
vlan/create N create the VLAN with tag N
vlan/remove N remove the VLAN with tag N
vlan/addport N PORT add port to the vlan N
 (tagged)
vlan/delport N PORT delete port from the vlan N
 (tagged)
vlan/print [N] print the list of defined vlan
vlan/allprint [N] print the list of defined vlan
 (including inactive port)

Listing 18: Subset of VDE switch commands

vde[/tmp/imnet/sw1/mgmt]: hash/print

Hash: 0005 Addr: a6:88:7e:28:22:8e VLAN 00 to port: 02 age 10 secs
Hash: 0019 Addr: 42:d3:fd:ed:a4:a1 VLAN 00 to port: 01 age 14 secs
Hash: 0073 Addr: 3a:9a:66:a1:66:67 VLAN 00 to port: 10 age 08 secs
Success

Listing 19: Switch MAC hastable

45

Students should begin by launching the topology and configuring all namespaces
to be on the same IP subnet. Once configured, it should become immediately
evident that all namespaces can communicate with each other, demonstrating the
basic functionality of the switch.

Next, Wireshark should be started in one of the namespaces. Then, a ping

command should be issued from the second namespace to the third. Since a switch
only forwards broadcast and unknown unicast frames to all ports, Wireshark
should display only ARP requests. Neither the ICMP Echo packets nor the ARP
replies for the other namespaces should be visible, as they are forwarded directly
to the correct destination ports.

Students should then connect to the switch CLI using imaginet attach sw1

and change the switch behaviour to simulate a hub with the port/sethub 1

command. In this mode, all frames are forwarded to every port, except the one they
were received on. As a result, Wireshark should now display the full ICMP traffic,
including Echo requests and replies. Reverting the switch to normal operation can
be done using port/sethub 0 .

At this point, students should examine the switch’s MAC address table using
hash/print . The entries should reflect the correct mapping of MAC addresses

to switch ports, based on which port namespaces are attached.

An extended setup involving multiple interconnected switches can also be simu-
lated. When one switch is connected to another, the port linking them will show
multiple MAC addresses in its table, corresponding to devices reachable through
the remote switch. This demonstrates that a single port can learn and store
multiple MAC address associations.

3.2.3. Lab 3
This laboratory is designed to help students understand how VLANs work, how
to configure them on a switch, and how packets are encapsulated with the IEEE
802.1Q VLAN tag [66]. The topology used in this lab builds on the previous one,
with modifications detailed at Appendix C.6. It defines four namespaces connected
to a single switch.
3.2.3.1. VLAN configuration and isolation

Students must configure the switch to isolate the first and second namespaces from
the third and fourth. Two VLANs should be chosen (we chose VLAN 10 and
VLAN 20 in this example) and assigned as untagged VLANs to the appropriate
switch ports (also known as access ports).

46

The topology file connects the first namespace to the first port of the switch, the
second namespace to the second and so on. To create the VLANs on the switch,
the vlan/create <vlan> command has to be used, while to assign an untagged
VLAN to a port, the port/setvlan <port> <vlan> command has to be used.
Students can verify the current status of VLANs with the vlan/print command.

To verify the correct VLAN configuration, namespaces in the same VLAN should
be able to communicate, while namespaces in different VLANs should not be
able to reach each other. It is highly recommended to run Wireshark on two
namespaces from different VLANs to ensure that the traffic is truly isolated and
packets differ between the two captures.
3.2.3.2. 802.1Q tag

In the second part of this lab, students will capture packets that include an 802.1Q
tag. To dynamically add a new namespace to the running topology, the follow-
ing command can be used: imaginet add namespace ns5 -- --iface eth0 .
To connect this namespace to port 5 of the switch, the com-
mand imaginet add cable --port-a eth0 --port-b 5 conn5 ns5 sw1 can
be used. Alternatively, students may choose to modify the topology file and
recreate the full topology, but this requires reconfiguring all namespaces and the
switch.

Once the new namespace is connected, students should start it and bring the
eth0 interface into the UP state. Then they should configure the switch to send

both VLANs as tagged on port number 5 with the vlan/addport <vlan> <port>
command. Students should now open Wireshark on the new namespace and listen
for broadcast packets from other namespaces (these can be manually generated
using the arping tool). Students should observe that captured packets now
include the 802.1Q VLAN tag, and the VLAN ID (VID) in the tag should match the
VLANs configured on the switch.
3.2.3.3. More advance scenarios

More advanced scenarios can be designed by introducing multiple switches and
configuring trunk ports (ports that carry traffic for multiple tagged VLANs). These
setups allow for more complex assignments where students can explore inter-
switch VLAN communication and more advanced network segmentation.

Additionally, misconfiguring VLANs can be used to simulate cybersecurity
vulnerabilities, such as VLAN hopping attacks. These scenarios provide useful
opportunities for students to understand the importance of correct VLAN config-
urations.

47

3.3. Routing
This section presents a series of laboratories and exercises designed to help
students understand how routing works. Routing is a fundamental aspect of the
Internet, enabling packets to traverse multiple and distinct networks to reach their
destination.

There are three main types of routing:

• Connected routes are automatically created when a router has multiple inter-
faces, each assigned to a different network. These are the simplest to configure.
Students only need to assign the correct IP addresses to the interfaces and enable
ip forwarding between them.

• Static routes are manually defined and specify how to reach a particular
network via a specific next-hop router. These routes are often used in controlled
environments where network paths do not change frequently.

• Dynamic routes are established using dynamic routing protocols such as Border
Gateway Protocol (BGP) or Open Shortest Path First (OSPF). These protocols
automatically adjust routes based on network topology changes. Dynamic rout-
ing requires more advanced networking knowledge, and no labs are included
for it.

In the following laboratories, students will learn how to configure connected and
static routes, and will also integrate these routing concepts with VLANs covered
in the previous labs.

3.3.1. Lab 4
This laboratory is designed to help students understand and become familiar
with connected routes. The topology for this lab is shown in Figure 10, and the
corresponding ImagiNet file is provided at Appendix C.7. In this setup, the router
is implemented as a regular namespace. However, since it performs packet routing
between networks, it is represented differently in the diagrams to make its role
clearer.

48

Figure 10: Lab 4 topology

Students should be able to configure each namespace’s interface
with an IP address in a different subnet and set a default gate-
way for each one. The default gateway can be configured using
the ip route add default via <ip> dev <interface> command. For ex-
ample, if the first namespace belongs to the 10.0.0.0/24 subnet,
its gateway could be 10.0.0.254 , which can be configured with
ip route add default via 10.0.0.254 dev eth0 .

On the router namespace, students must assign IP addresses to each interface,
using the same IPs previously set as gateways in the corresponding namespaces.
Once this configuration is complete, each namespace should be able to ping the
router and its interfaces. However, communication between namespaces will still
not be possible, because ip forwarding is not yet enabled.

To allow packets to be forwarded between interfaces on the router,
students must enable IP forwarding using the following command:
sysctl -w net.ipv4.ip_forward=1 . Once IP forwarding is enabled, all name-

spaces should be able to communicate with each other across the router.

It is highly recommended that students use Wireshark to capture packets both in
a namespace and on the router. This will allow them to observe how the Ethernet
frame is modified at each hop.

3.3.2. Lab 5
As the number of networks increases, assigning a dedicated physical interface for
each network on a router quickly becomes impractical. To address this limitation,
routers are often configured to handle multiple VLANs on a single physical
interface. VLAN tags are used to keep traffic from different networks logically
separated. This setup is commonly known as a “router on a stick” configuration.

49

In this laboratory, students will learn how a router with a single physical interface
can route between multiple networks separated by VLANs. They will practice
creating virtual sub-interfaces on a Linux host and configuring connected routes
to enable inter-VLAN communication.

The topology used in this lab is illustrated in Figure 11, and the corresponding
ImagiNet configuration file is available in Appendix C.8. It consists of three name-
spaces and a router, all connected to a single switch.

Figure 11: Lab 5 topology

Assuming students have completed and understood the previous labs, they should
now be able to configure each namespace with an IP address and a corresponding
gateway, placing each namespace in a different subnet. The switch must be
configured with three distinct VLANs, assigning each namespace port as untagged
and tagging all VLANs on the router’s port.

To enable routing between VLANs over a single physical interface, students
must create a virtual interface for each VLAN. This is done using the
ip link add link <interface> name <new interface> type vlan id <vid>

command. The <interface> parameter is the name of the interface on
which the virtual interface will operate, while the <new interface> field
is the name of the new interface. For example, to create a virtual inter-
face named eth0.10 for the VLAN 10 on physical interface eht0 , the
ip link add link eth0.10 name eth0 type vlan id 10 command can be

used. After creation, each virtual interface can be treated like a physical one. Since
the configuration of connected routes has already been covered in previous labs,
students should now be able to configure the router to enable communication
between the namespaces.

50

As in previous labs, students are encouraged to capture packets using Wireshark
on both the physical interface and the virtual interfaces of the router. They should
observe that the physical interface receives packets tagged with the 802.1Q VLAN
header, while the virtual interfaces receive only the packets belonging to their
respective VLAN, with the VLAN tag already stripped by the kernel.

3.3.3. Lab 6
In this laboratory, students will learn what static routes are and how to configure
them on a Linux host. The topology used in this lab is illustrated in Figure 12, and
the corresponding ImagiNet configuration file is provided at Appendix C.9.

Figure 12: Lab 6 topology

At the end of this lab, students should be able to configure the network in a way
that allows the namespaces to communicate with each other. The first task is to
assign each namespace an IP address in a different subnet and configure the correct
default gateway. These gateway IPs must correspond to the IPs assigned to the
router interfaces connected to the namespaces.

Next, students need to configure the routers themselves. Each router interface
should be placed in a distinct subnet, including the interface that connects the
two routers together. With this configuration, each namespace should be able to
reach its own gateway, but communication between the two namespaces will not
yet be possible. This is because, when a packet arrives at the router, the router
has no route indicating how to reach the destination network that sits behind the
other router.

To enable full communication between the namespaces, static routes must
be added to the routers. Each router needs to be told how to reach
the subnet connected to the other one. This can be done using the
ip route add <subnet> via <next-hop> dev <interface> command. For in-

stance, if Router2 has the IP address 172.16.0.2 , and the second namespace is
in the 192.168.0.0/24 network, then Router1 can be configured with the fol-
lowing command: ip route add 192.168.0.0/24 via 172.16.0.2 dev eth1 .

51

To inspect the current routing table on a machine, students can use the ip route
command. For verification and debugging purposes, the traceroute utility is
useful, as it displays the path taken by packets to reach their destination. This
helps confirm whether routing has been set up correctly or identify where in
the network the packet path is failing. An example of a traceroute output is
provided in Listing 20.

user@ns1 ~$ traceroute 192.168.0.1
traceroute to 192.168.0.1 (192.168.0.1), 30 hops max, 60 byte
packets
 1 _gateway (10.0.0.254) 0.716 ms 0.688 ms 0.675 ms
 2 172.16.0.2 (172.16.0.2) 1.358 ms 1.356 ms 1.353 ms
 3 192.168.0.1 (192.168.0.1) 2.228 ms 2.266 ms 2.258 ms

Listing 20: traceroute example

Students are encouraged to capture and analyse packets on both routers while
the two namespaces communicate. This allows them to observe how packets are
forwarded across different networks and how the Ethernet and IP headers are
modified at each hop.

3.4. Firewalls
Firewalls are network devices that control the flow of traffic based on a set of pre-
defined rules. These rules determine whether traffic should be allowed, dropped,
or explicitly rejected. In addition to traffic filtering, firewalls often handle Network
Address Translation (NAT), enabling communication between private and public
networks.

While managing a firewall is typically a more advanced topic covered in system
and network administration courses, a basic introduction to key firewall opera-
tions can still be valuable in more introductory settings. This lab is designed to
provide a simple overview of essential concepts and commands related to firewall
management.

In this lab, firewalls are simulated using Linux namespaces, which support full use
of the iptables utility.

52

3.4.1. Lab 7
In the following laboratory, students will explore how Network Address Trans-
lation (NAT) functions and how to configure Destination NAT, also known as
port forwarding. This concept is used for enabling access to internal services from
external networks.

The network topology for this lab is shown in Figure 13, and the corresponding
ImagiNet configuration file is available at Appendix C.10. The provided configu-
ration is designed to let students concentrate specifically on the firewall and NAT
aspects, as the rest of the topology is already set up. However, for those who
wish to configure everything from scratch, it is entirely possible to remove the
pre-configured settings and manually configure the entire network, including IP
addresses, routes, and interfaces.

Figure 13: Lab 7 topology

The first part of this laboratory introduces a setup where a router also functions
as a firewall, using NAT to allow two namespaces to communicate as they are
part of a private network. While in medium-larger infrastructures firewalls are
often standalone devices, in small networks it is common to combine routing
and firewall functionality in a single system to simplify management and enforce
internal traffic policies.

In the second part of this lab, students will configure Destination NAT to enable
external hosts on the Internet to access one of the internal namespaces through a
specific port. This setup is common in real-world scenarios where multiple internal
servers with private IP addresses need to be reachable from the outside.

To configure packet filtering and NAT rules on Linux systems, several user-space
tools are available. This lab uses the iptables utility, whose documentation is
available on the official Netfilter website [67]. While iptables remains widely
used, students may also explore more modern alternatives such as nftables ,
also maintained by Netfilter. For managing complex rule sets, especially as they

53

grow in size and complexity, tools like Shorewall [68] are recommended to simplify
firewall configuration and maintenance.
3.4.1.1. Source NAT

After creating and starting the topology, students should begin by configuring
the basic policies for the INPUT, OUTPUT, and FORWARD chains using the
iptables utility. These chains determine how the firewall handles packets that

are received by the host, sent from the host, or forwarded through the host,
respectively. To list the current set of rules, the command iptables -L can be
used. The output should be similar to Listing 21. In this case, the three chains are
all empty, end their policies are all ACCEPT, meaning that all traffic is currently
allowed.

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)

Listing 21: iptables chain example

A basic firewall that is situated at the boundary of the Internet should implement
a deny-by-default policy. This means setting the default policies of at least the IN-
PUT and FORWARD chains to DROP, so that only explicitly allowed traffic is per-
mitted. To set a default policy to a chain, the iptables -P <chain> <policy>

command can be used. In this example, to DROP everything by default in the
INPUT and FORWARD chains, the commands iptables -P INPUT DROP and
iptables -P FORWARD DROP can be used. Students can verify the success of

these commands by using the iptables -L command.

Before changing the default policies, the router could communicate freely with
both the internal namespaces and the Internet. However, at this stage, all com-
munication should stop, except between the two namespaces connected via the
switch. This behaviour might seem surprising. For example, if a student tries to
ping the Internet namespace from the router, the packet is still sent because the
OUTPUT chain policy remains set to ACCEPT. Wireshark would even show the
response returning to the router. However, the response is dropped by the router
itself because the INPUT chain now rejects all incoming packets, even those that
are part of established connections. To allow returning traffic from already existing
or new but related connections, students should add a rule to accept packets

54

in the ESTABLISHED or RELATED states. This can be done with the following
command⁷:

iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED \
 -j ACCEPT

After adding the rule to accept ESTABLISHED and RELATED connections, the
router is able to receive replies from other devices in the network. However,
students should notice that while the router is able to ping the Internet, the
Internet namespace is not able to reach the router if communication starts from
it. This behaviour is consistent with the current firewall configuration, as only
the returned traffic from previously initiated connections is allowed. If a packet
belongs to a new connection that has not originated from the router itself is
dropped.

To allow internal namespaces to reach the Internet through the router, the
FORWARD chain must be configured. This chain filters packets that traverse the
router but are neither originated from nor destined to the router itself.

To permit forwarding of packets that arrive on the eth0 interface (which is
connected to the internal network) and leave via the eth1 interface (the external/
Internet network), the following rule should be added:

iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

With this rule, students will observe that packets, such as ICMP echo requests,
can leave the internal namespaces, pass through the router, and reach the Internet
namespace. However, the reply packets will not be generated. This is because
the Internet namespace does not have a route back to the internal subnet. The
default behaviour for Linux is to discard traffic that has an unknown destination.
To test and confirm this, students can manually add a static route on the Internet
namespace with the ip route add 10.0.0.0/24 via 90.80.70.1 dev eth0

command. The Internet namespace will now attempt to return packets to the
internal network. However, the firewall still blocks these return packets unless
another rule is added to the FORWARD chain to permit return traffic for estab-
lished connections. This can be done with:

iptables -A FORWARD -i eth1 -o eth0 -m conntrack \

⁷The backslash (\) in the command indicates a line continuation, but in practice it should be
written on a single line.

55

 --ctstate RELATED,ESTABLISHED -j ACCEPT

At the current state of the firewall, replies from the Internet to the internal name-
spaces will be allowed, and full two-way communication that originates from the
namespaces should be possible.

At this point in the lab, students should notice that the internal namespaces are
able to send packets to the Internet, but the packets that arrive on the Internet
namespaces have a private source address corresponding the the namespaces’
subnet. As private IPs are not routable on the Internet, students should now
configure the NAT.

In this case, NAT modifies packets that exit the external interface of the router and
changes the source IPs to the router’s own public IP, making the communication
with the Internet correct and possible.

If previously a static route was configured on the Internet namespace, it should
be removed with the ip r del 10.0.0.0/24 via 90.80.70.1 dev eth0 com-
mand. Then, the router needs to masquerade the outgoing packets from the
internal network when they are forwarded to the Internet. This is done by adding
a rule to the nat table in the POSTROUTING chain:

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

Now everything is correctly configured, and namespaces should be able to ping
the Internet namespace. The ICMP packets arriving on it should have the source
address equal to the router’s public address, instead of the namespace that gener-
ated the connection.
3.4.1.2. Destination NAT

In the possibility that a service running on the port 3000 on the first namespace
that has the 10.0.0.1 IP address configured must be reachable from the Internet,
a Destination NAT rule has to be added. This is also known as port forwarding:
every connection to the router’s public IP at that specific port will be redirected
to the configured namespace. The following command can be used to add the
destination NAT rule:

iptables -t nat -A PREROUTING -i eth1 -p tcp --dport 3000 \
 --to 10.0.0.1:3000 -j DNAT

At this point, every TCP connection that arrives on the 3000 ports has the
destination IP rewritten as 10.0.0.1 . But, since the FORWARDING table is now

56

responsible for letting packets pass through the router, a new rule must be added to
allow external connections for the 3000 port. This can be done with the following
command:

iptables -A FORWARD -i eth1 -o eth0 -p tcp -m tcp --dport 3000 -j
ACCEPT

Students should now verify that everything is configured properly with the netcat
utility by listening for connections on the configured namespace while connecting
from the Internet.

3.5. Advance scenarios
The laboratories presented so far highlight the networking aspects of each topic
while using a minimal set of administration tools for learning and experimenta-
tion. This approach works well for computer network courses but may be too basic
for network administration courses. ImagiNet can also support advanced network
administration courses where multiple Linux hosts function as routers, firewalls
and servers. While we have chosen not to include more complex scenarios, teach-
ers who see potential value in using ImagiNet for their courses should experiment
with custom topologies customised to their specific course needs.

3.5.1. Group laboratories
The final laboratory proposed differs from previous exercises by requiring students
to work in groups rather than individually. This laboratory assumes students can
work on computers connected to the same network. This can be accomplished
by conducting the laboratory in a physical university computer lab where all
machines share the same network connection. Alternatively, Virtual Private Net-
works (VPNs) can be used to connect student computers as if they were on the
same local network. Instructors should choose the approach that best fits their
requirements.

ImagiNet can use VXVDE (Chapter 2.1.3.2) to create a virtual switch that operates
over a physical network. This capability allows multiple computers on the network
to run ImagiNet and connect virtualised namespaces from different physical hosts
to each other. Using this feature, the following laboratory creates a small topology
for each student where a router is connected through VXVDE to a virtual switch

57

that also connects other students’ routers. The router portion of this topology is
shown in Figure 14.

Figure 14: Router topology for the VXVDE laboratory

Each student’s router can be connected to a local switch where multiple VLANs
are configured for multiple namespaces. Students must first correctly configure
the internal routing within their own topology. Then they need to collaborate
with other students to decide which IP addresses are assigned to each router and
determine what routes can be reached from each one. All the previously presented
laboratories should provide the necessary knowledge to administer this topology.
Students must now work together to troubleshoot problems and misconfigurations
from both ends of the network. A firewall configuration can also be added to each
router to prevent unauthorised traffic from other students. A partial example of
an ImagiNet file for this topology can be found at Appendix C.11.

3.6. Teaching with ImagiNet
During its development, ImagiNet was used to teach network topics to a small
group of students who participated in system administration laboratories. Some
of the topologies and labs presented earlier are inspired by the topologies actually
used to teach those topics. During these laboratories, students were actively
supported by more advanced and experienced students who helped them better
understand what they were simulating.

58

Overall, the experience was extremely positive as all students successfully learned
the laboratory topics. Some students even continued working on more advanced
exercises during non-university hours.

We believe that ImagiNet is an excellent tool for teaching and, for a small group
of students, it has proven extremely valuable. While no actual laboratories with a
large number of students have been tested, we are convinced this would be entirely
possible and would bring significant value alongside theoretical lectures.

59

60

Conclusions

4.1. Improvements
In this section, several potential improvements are suggested. Since the project is
released under the AGPL-3.0 License [69], we welcome users to freely share and
modify the software to meet their specific needs. We would be glad to incorporate
significant improvements into the official project repository.

4.1.1. IaC differential updates
As shown in Chapter 2.2, ImagiNet uses a declarative Infrastructure as Code (IaC)
approach to define topologies. Given a topology file, ImagiNet creates the topology
using the create command. After the topology is created, users must use the
add and rm commands to modify it dynamically without stopping and deleting

the running devices.

Modern IaC tools often allow users to reapply a configuration file that has already
been applied. The tool then checks the differences with the current application
state and applies only the changes, leaving unmodified components untouched.

ImagiNet could adopt a similar approach, allowing users to modify the original
topology file and apply it to the current running topology. ImagiNet would calcu-
late the differences and apply only the necessary changes, eliminating the need to
stop and clear the current application state.

61

4.1.2. Missing VDE features and optimisations
Although ImagiNet covers many VDE features, it does not cover them all. For the
educational purposes that were the primary focus during development, this is not
problematic, but ImagiNet could also be considered a tool for configuring VDE
scenarios where additional features are needed.

vdeplug4 (Chapter 2.1.3.2) provides a more lightweight implementation of
switches and hubs compared to the current implementation based on VDE-2
(Chapter 2.1.3.1). The main difference is that the vdeplug4 switch is unmanaged, so
it cannot be configured with VLANs or other parameters. For topologies that do
not require managed switches, a flag could be implemented to distinguish between
managed and unmanaged switches, allowing ImagiNet to choose the appropriate
implementation.

ImagiNet currently includes a flag to convert a switch to a hub, but it still uses
the VDE-2 implementation. It would be possible to use vdeplug4 instead, since
a hub does not need a management interface, except for educational purposes,
where dynamically switching between the two device types helps demonstrate
differences in frame forwarding.

4.1.3. Didattic router and firewall
Network administration courses can benefit significantly from hands-on routing
experience and Linux firewall usage. However, for network courses focused
primarily on theoretical topics, firewalls can present a complex interface and
command set that may overwhelm students at first.

The VDE project does not need a router and a firewall, but for educational
purposes, it would be possible to develop custom user programs that function
as simplified routers and firewalls. These programs would feature a reduced
command set to help students during laboratories, eliminating the need to learn
complex management tools and instead focusing on core networking concepts.

This approach would be particularly valuable for firewall components, where
iptables or nftables are typically involved. A program with a simple inter-

face, similar to the VDE switch, that can act as a transparent firewall would help
students experiment with basic packet filtering rules and NAT configurations.
These tools would help students connect theory with real-world practice by
making it easier to understand fundamental concepts without being hindered by
complicated syntax or setup.

62

4.1.4. Software packaging
Software packaging refers to the process of bundling software and its associated
components into a distributable format that can be easily installed and managed
on various computer systems. Packaging enables tracking of installed files and
automatic software updates while providing users with a straightforward way to
install programs.

Currently, to install ImagiNet, users must download and compile the source
code themselves after resolving all necessary dependencies. This process can be
time-consuming and may present barriers for users who are less familiar with
compilation procedures and dependency resolution. It would be beneficial if Imag-
iNet were packaged for the major package managers of GNU/Linux distributions.
This would allow users to install the software easily and resolve all dependencies
automatically, significantly reducing the setup time and making ImagiNet more
accessible to educators and students who want to focus on learning rather than
software installation labours.

4.2. Final thoughts
In conclusions, this thesis has explored the design and implementation of a net-
work simulator based on Virtual Distributed Ethernet (VDE). Although this project
began with a different scope, it quickly became clear that ImagiNet would serve as
an excellent simulation tool for educational purposes. From this moment of real-
ization, every design choice was made toward creating a tool that is both powerful
and simple enough to be used in university computer networking courses.

ImagiNet is not the first network simulator used as a teaching tool, and it
certainly will not be the last. Multiple network simulation softwares exist, each
with different features and characteristics. The overview in Chapter 1.1 should
help readers understand how ImagiNet positions itself among other simulators,
particularly when considering its implementation covered in Chapter 2. After
reading Chapter 3, readers should have a wider and clearer understanding of the
educational possibilities that ImagiNet offers.

This thesis presents only a small portion of all the possible network simulation
topologies that are possible with ImagiNet. The simulation possibilities are nearly
limitless, which can help teachers customize and adapt this tool to their specific

63

course requirements. The flexibility of ImagiNet allows educators to create sce-
narios that precisely match their curriculum objectives, from basic networking
concepts to more advanced network administration tasks.

ImagiNet has achieved its intended purpose and has proven successful in teaching
a small group of students. While it has not yet been utilised in large courses
involving hundreds of students, we believe this would be entirely feasible and
beneficial. The architecture and design principles of ImagiNet support scalability,
and we encourage educators to experiment with larger class sizes. Such accom-
plishments would provide valuable insights into the tool’s effectiveness at scale
and could further validate its potential as a comprehensive educational platform
for network learning.

64

Appendices

A Topology generator
from dataclasses import dataclass, field, asdict Python
from typing import List, Optional
import yaml

NS_PER_SW = 4
SW_PER_GROUP = 4
GROUPS = 4

@dataclass
class NSInterface:
 name: str
 ip: Optional[str] = None
 gateway: Optional[str] = None

@dataclass
class Namespace:
 name: str
 interfaces: List[NSInterface] = field(default_factory=list)

@dataclass
class Switch:

65

 name: str
 ports: int = 32

@dataclass
class Endpoint:
 name: str
 port: Optional[str] = None

@dataclass
class Cable:
 name: str
 endpoint_a: Endpoint
 endpoint_b: Endpoint
 wirefilter: Optional[bool] = None

@dataclass
class Topology:
 switch: List[Switch] = field(default_factory=list)
 namespace: List[Namespace] = field(default_factory=list)
 cable: List[Cable] = field(default_factory=list)

def generate_namespaces(g):
 nss = []
 for sw in range(SW_PER_GROUP):
 for ns in range(NS_PER_SW):
 name = f"ns{g:03}{sw:03}{ns:03}"
 ns = Namespace(name=name,interfaces=[NSInterface(
 name="eth0",
 ip=f"10.{sw}.{ns//256}.{ns%253 + 1}/16",
 gateway=f"10.{sw}.{ns//256}.254")])
 nss.append(ns)

 return nss

def generate_switches(g):
 sws = []
 for sw in range(SW_PER_GROUP):
 name = f"sw{g:03}{sw:03}"
 sw = Switch(name=name, ports=max(32, NS_PER_SW + 1))
 sws.append(sw)

66

 return sws

def generate_router(g):
 name = f"r{g:03}"
 router = Namespace(name=name)
 interfaces = []
 for i in range(SW_PER_GROUP):
 interfaces.append(NSInterface(name=f"int{i}",
 ip=f"10.{g}.{i}.254/16"))
 for i in range(GROUPS):
 if i == g:
 continue
 interfaces.append(NSInterface(name=f"ext{i}",))

 router.interfaces = interfaces
 return router

def generate_cables(g):
 cables = []
 for sw in range(SW_PER_GROUP):
 for ns in range(NS_PER_SW):
 name = f"c{g:03}{sw:03}{ns:03}"
 endpoint_a = Endpoint(name=f"ns{g:03}{sw:03}{ns:03}",
 port="eth0")
 endpoint_b = Endpoint(name=f"sw{g:03}{sw:03}")
 cable = Cable(name=name, endpoint_a=endpoint_a,
 endpoint_b=endpoint_b)
 cables.append(cable)

 name = f"ci{g:03}{sw:03}"
 endpoint_a = Endpoint(name=f"sw{g:03}{sw:03}")
 endpoint_b = Endpoint(name=f"r{g:03}", port=f"int{sw}")
 cable = Cable(name=name, endpoint_a=endpoint_a,

endpoint_b=endpoint_b)
 cables.append(cable)

 return cables

67

def generate_router_cables(routers):
 cables = []
 for g in range(GROUPS):
 for i in range(GROUPS):
 if i <= g:
 continue
 name = f"cr{g:03}{i:03}"
 endpoint_a = Endpoint(name=f"r{g:03}", port=f"ext{i}")
 endpoint_b = Endpoint(name=f"r{i:03}", port=f"ext{g}")
 cable = Cable(name=name, endpoint_a=endpoint_a,

endpoint_b=endpoint_b, wirefilter=False)
 cables.append(cable)

 return cables

def main():
 nss, sws, cs, routers = [], [], [], []
 for g in range(GROUPS):
 nss = nss + generate_namespaces(g)
 sws = sws + generate_switches(g)
 routers.append(generate_router(g))
 cs = cs + generate_cables(g)

 rcables = generate_router_cables(routers)

 topology = Topology(
 namespace = nss + routers,
 switch = sws,
 cable = cs + rcables,
)

 yaml_str = yaml.dump(asdict(topology), sort_keys=False,
 default_flow_style=False)
 print(yaml_str)

if __name__ == "__main__":
 main()

68

B Topology creation
B.1 Topology 0 efficient

#!/bin/bash bash
ip l set vde0 up
ip a a 10.0.0.1/24 dev vde0
bash

Listing 22: Script /tmp/t0-ns0.sh

#!/bin/bash bash
ip l set vde0 up
ip a a 10.0.0.2/24 dev vde0
bash

Listing 23: Script /tmp/t0-ns1.sh

Terminal 0 bash
vdens ptp:///tmp/t0 /tmp/t0-ns0.sh
Terminal 1
vdens ptp:///tmp/t0 /tmp/t0-ns1.sh

Listing 24: Commands to start the topology

B.2 Topology 0 ImagiNet

namespace: Yaml
 - name: ns1
 interfaces:
 - name: eth0
 ip: 10.0.0.1/24

 - name: ns2
 interfaces:
 - name: eth0
 ip: 10.0.0.2/24
cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: ns2

69

 port: eth0

B.3 Topology 1 efficient

#!/bin/bash bash
ip a a 10.0.0.1/24 dev vde0
ip l set vde0 up
ip r a default via 10.0.0.254 dev vde0
bash

Listing 25: Script /tmp/t1-ns0.sh

#!/bin/bash bash
ip a a 10.0.0.254/24 dev vde0
ip l set vde0 up
ip a a 172.16.0.1/24 dev vde1
ip l set vde1 up
/usr/sbin/sysctl -w net.ipv4.ip_forward=1
ip r a 192.168.0.0/24 via 172.16.0.2 dev vde1
bash

Listing 26: Script /tmp/t1-ns1.sh

#!/bin/bash bash
ip a a 172.16.0.2/24 dev vde0
ip l set vde0 up
ip a a 192.168.0.254/24 dev vde1
ip l set vde1 up
/usr/sbin/sysctl -w net.ipv4.ip_forward=1
ip r a 10.0.0.0/24 via 172.16.0.1 dev vde0
bash

Listing 27: Script /tmp/t1-ns2.sh

#!/bin/bash bash
ip a a 192.168.0.1/24 dev vde0
ip l set vde0 up
ip r a default via 192.168.0.254 dev vde0
bash

Listing 28: Script /tmp/t1-ns3.sh

70

Terminal 0 bash
vdens ptp:///tmp/t0 /tmp/t1-ns0.sh
Terminal 1
vdens --multi ptp:///tmp/t0 ptp:///tmp/t1 -- /tmp/t1-ns1.sh
Terminal 2
vdens --multi ptp:///tmp/t1 ptp:///tmp/t2 -- /tmp/t1-ns2.sh
Terminal 3
vdens ptp:///tmp/t2 /tmp/t1-ns3.sh

Listing 29: Commands to start the topology

B.4 Topology 1 ImagiNet

namespace: Yaml
 - name: ns1
 interfaces:
 - name: eth0
 ip: 10.0.0.1/24
 gateway: 10.0.0.254

 - name: ns2
 interfaces:
 - name: eth0
 ip: 10.0.0.254/24
 - name: eth1
 ip: 172.16.0.1/24
 commands:
 - ip r a 192.168.0.0/24 via 172.16.0.2 dev eth1
 - /usr/sbin/sysctl -w net.ipv4.ip_forward=1

 - name: ns3
 interfaces:
 - name: eth0
 ip: 172.16.0.2/24
 - name: eth1
 ip: 192.168.0.254/24
 commands:
 - ip r a 10.0.0.0/24 via 172.16.0.1 dev eth0
 - /usr/sbin/sysctl -w net.ipv4.ip_forward=1

 - name: ns4

71

 interfaces:
 - name: eth0
 ip: 192.168.0.1/24
 gateway: 192.168.0.254

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: ns2
 port: eth0

 - name: conn2
 endpoint_a:
 name: ns2
 port: eth1
 endpoint_b:
 name: ns3
 port: eth0

 - name: conn3
 endpoint_a:
 name: ns3
 port: eth1
 endpoint_b:
 name: ns4
 port: eth0

B.5 Topology 2 efficient
The /tmp/t2-ns0.sh script is the same as /tmp/t1-ns0.sh in Listing 25.

The /tmp/t2-ns1.sh script is the same as /tmp/t1-ns3.sh in Listing 28.

72

#!/bin/bash bash
ip a a 10.0.0.254/24 dev vde0
ip l set vde0 up
ip a a 192.168.0.254/24 dev vde1
ip l set vde1 up
/usr/sbin/sysctl -w net.ipv4.ip_forward=1
bash

Listing 30: Script /tmp/t2-ns2.sh

vlan/create 10
vlan/create 20
port/create 1
port/create 2
port/create 3
port/create 4

port/setvlan 1 10
port/setvlan 2 20
port/setvlan 3 10
port/setvlan 4 20

Listing 31: The switch configuration file /tmp/t2-sw.conf

Terminal 0 bash
vde_switch -s /tmp/sw0 -d
vde_switch -s /tmp/sw1 -d
vde_switch -s /tmp/sw2 -f /tmp/t2-sw.conf -d
vdens vde:///tmp/sw0 /tmp/t2-ns0.sh
Terminal 1
vdens vde:///tmp/sw1 /tmp/t2-ns1.sh
Terminal 2
vdens --multi 'vde:///tmp/sw2[3]' 'vde:///tmp/sw2[4]' -- \
 /tmp/t2-ns2.sh
Terminal 3
vde_plug 'vde:///tmp/sw0' 'vde:///tmp/sw2[1]'
Terminal 4
vde_plug 'vde:///tmp/sw1' 'vde:///tmp/sw2[2]'

Listing 32: Commands to start the topology

B.6 Topology 2 ImagiNet
The switch configuration file /tmp/t2-sw.conf is in Listing 31.

73

switch: Yaml
 - name: sw0
 - name: sw1
 - name: sw2
 config: /tmp/t2-sw.conf

namespace:
 - name: ns0
 interfaces:
 - name: eth0
 ip: 10.0.0.1/24
 gateway: 10.0.0.254

 - name: ns1
 interfaces:
 - name: eth0
 ip: 192.168.0.1/24
 gateway: 192.168.0.254

 - name: ns2
 interfaces:
 - name: eth0
 ip: 10.0.0.254/24

 - name: eth1
 ip: 192.168.0.254/24
 commands:
 - /usr/sbin/sysctl -w net.ipv4.ip_forward=1

cable:
 - name: conn0
 endpoint_a:
 name: ns0
 port: eth0
 endpoint_b:
 name: sw0

 - name: conn1
 endpoint_a:
 name: ns1

74

 port: eth0
 endpoint_b:
 name: sw1

 - name: conn2
 endpoint_a:
 name: sw0
 endpoint_b:
 name: sw2
 port: "1"

 - name: conn3
 endpoint_a:
 name: sw1
 endpoint_b:
 name: sw2
 port: "2"

 - name: conn4
 endpoint_a:
 name: ns2
 port: eth0
 endpoint_b:
 name: sw2
 port: "3"

 - name: conn5
 endpoint_a:
 name: ns2
 port: eth1
 endpoint_b:
 name: sw2
 port: "4"

B.7 Topology 3 ImagiNet
The switch configuraton file t3-sw.conf is the same as the t2-sw.conf con-
figuration file in Listing 31.

switch: Yaml
 - name: sw0

75

 config: t3-sw.conf
 - name: sw1
 config: t3-sw.conf
 - name: sw2

namespace:
 - name: ns0
 interfaces:
 - name: eth0
 ip: 10.0.0.1/24
 gateway: 10.0.0.254

 - name: ns1
 interfaces:
 - name: eth0
 ip: 10.0.1.1/24
 gateway: 10.0.1.254

 - name: r0
 interfaces:
 - name: eth0
 ip: 10.0.0.254/24
 - name: eth1
 ip: 10.0.1.254/24
 - name: eth2
 ip: 172.16.0.1/30
 commands:
 - /usr/sbin/sysctl -w net.ipv4.ip_forward=1
 - ip r a 192.168.0.0/24 via 172.16.0.2 dev eth2
 - ip r a 192.168.1.0/24 via 172.16.0.2 dev eth2

 - name: r1
 interfaces:
 - name: eth0
 ip: 192.168.0.254/24
 - name: eth1
 ip: 192.168.1.254/24
 - name: eth2
 ip: 172.16.0.2/30
 commands:

76

 - /usr/sbin/sysctl -w net.ipv4.ip_forward=1
 - ip r a 10.0.0.0/24 via 172.16.0.1 dev eth2
 - ip r a 10.0.1.0/24 via 172.16.0.1 dev eth2

 - name: ns2
 interfaces:
 - name: eth0
 ip: 192.168.0.1/24
 gateway: 192.168.0.254

 - name: ns3
 interfaces:
 - name: eth0
 ip: 192.168.1.1/24
 gateway: 192.168.1.254

cable:
 - name: conn0
 endpoint_a:
 name: ns0
 port: eth0
 endpoint_b:
 name: sw0
 port: "1"

 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: sw0
 port: "2"

 - name: conn2
 endpoint_a:
 name: sw0
 port: "10"
 endpoint_b:
 name: r0
 port: eth0

77

 - name: conn3
 endpoint_a:
 name: sw0
 port: "11"
 endpoint_b:
 name: r0
 port: eth1

 - name: conn4
 endpoint_a:
 name: r0
 port: eth2
 endpoint_b:
 name: sw2

 - name: conn5
 endpoint_a:
 name: r1
 port: eth2
 endpoint_b:
 name: sw2

 - name: conn6
 endpoint_a:
 name: r1
 port: eth0
 endpoint_b:
 name: sw1
 port: "10"

 - name: conn7
 endpoint_a:
 name: r1
 port: eth1
 endpoint_b:
 name: sw1
 port: "11"

 - name: conn8

78

 endpoint_a:
 name: ns2
 port: eth0
 endpoint_b:
 name: sw1
 port: "1"

 - name: conn9
 endpoint_a:
 name: ns3
 port: eth0
 endpoint_b:
 name: sw1
 port: "2"

C Laboratories
C.1 Lab 0

namespace: Yaml
 - name: ns1
 interfaces:
 - name: eth0
 - name: ns2
 interfaces:
 - name: eth0
cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: ns2
 port: eth0

79

C.2 Lab 1
The topology is identical to the one defined for Lab 0 in Appendix C.1. The only
difference is the cable that has wirefilter enabled.

cable: Yaml
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: ns2
 port: eth0
 wirefilter: true

C.3 TCP/UDP client script

import socket Python
import time

def start_client(protocol, ip, port):
 count = 0
 proto = protocol.lower()
 match proto:
 case 'tcp':
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 case 'udp':
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 case _:
 print("Unsupported protocol. Use TCP or UDP.")
 exit(1)

 s.connect((ip, port))
 print(f"Connected to {proto} server at {ip}:{port}")
 while True:
 time.sleep(1)
 count += 1
 print(f"Count: {count}")
 s.send("1\n".encode())

80

if __name__ == "__main__":
 proto = input("Enter protocol (TCP/UDP): ").strip()
 ip = input("Enter server IP address: ").strip()
 port = int(input("Enter server port number: ").strip())
 start_client(proto, ip, port)

C.4 TCP/UDP server script

import socket Python

def start_server(protocol, port):
 count = 0
 proto = protocol.lower()
 # Create socket based on protocol
 if proto == 'tcp':
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.bind(('0.0.0.0', port))
 s.listen(1)
 print(f"TCP server listening on port {port}")
 conn, addr = s.accept()
 print(f"Connected by {addr}")
 recv_func = lambda: conn.recv(1024)
 elif proto == 'udp':
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.bind(('0.0.0.0', port))
 print(f"UDP server listening on port {port}")
 recv_func = lambda: s.recvfrom(1024)[0]
 else:
 print("Unsupported protocol. Use TCP or UDP.")
 exit(1)

 while True:
 data = recv_func()
 if not data and proto == 'tcp': # TCP connection closed
 break
 # Count occurrences of '1' in the received data
 ones_received = data.decode().count('1')
 if ones_received > 0:
 count += ones_received
 print(f"Received {ones_received} ones, Total: {count}")

81

 if proto == 'tcp':
 conn.close()

if __name__ == "__main__":
 proto = input("Enter protocol (TCP/UDP): ").strip()
 port = int(input("Enter port number: ").strip())
 start_server(proto, port)

C.5 Lab 2

switch: Yaml
 - name: sw1

namespace:
 - name: ns1
 interfaces:
 - name: eth0
 - name: ns2
 interfaces:
 - name: eth0
 - name: ns3
 interfaces:
 - name: eth0

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: sw1
 port: "1"
 - name: conn2
 endpoint_a:
 name: ns2
 port: eth0
 endpoint_b:
 name: sw1
 port: "2"

82

 - name: conn3
 endpoint_a:
 name: ns3
 port: eth0
 endpoint_b:
 name: sw1
 port: "3"

C.6 Lab 3
This topology is based on the topology from Lab 2 (Appendix C.5), but with
a fourth namespace and a new cable. Only the new namespace and cable are
reported.

namespace: Yaml
 - name: ns4
 interfaces:
 - name: eth0

cable:
 - name: conn4
 endpoint_a:
 name: ns4
 port: eth0
 endpoint_b:
 name: sw1
 port: "4"

C.7 Lab 4

namespace: Yaml
 - name: ns1
 interfaces:
 - name: eth0
 - name: ns2
 interfaces:
 - name: eth0
 - name: ns3
 interfaces:
 - name: eth0
 - name: router

83

 interfaces:
 - name: eth0
 - name: eth1
 - name: eth2

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: router
 port: eth0
 - name: conn2
 endpoint_a:
 name: ns2
 port: eth0
 endpoint_b:
 name: router
 port: eth1
 - name: conn3
 endpoint_a:
 name: ns3
 port: eth0
 endpoint_b:
 name: router
 port: eth2

C.8 Lab 5

switch: Yaml
 - name: sw1

namespace:
 - name: ns1
 interfaces:
 - name: eth0
 - name: ns2
 interfaces:
 - name: eth0

84

 - name: ns3
 interfaces:
 - name: eth0
 - name: router
 interfaces:
 - name: eth0

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: sw1
 port: "1"
 - name: conn2
 endpoint_a:
 name: ns2
 port: eth0
 endpoint_b:
 name: sw1
 port: "2"
 - name: conn3
 endpoint_a:
 name: ns3
 port: eth0
 endpoint_b:
 name: sw1
 port: "3"
 - name: conn4
 endpoint_a:
 name: router
 port: eth0
 endpoint_b:
 name: sw1
 port: "10"

C.9 Lab 6

namespace: Yaml

85

 - name: ns1
 interfaces:
 - name: eth0
 - name: router1
 interfaces:
 - name: eth0
 - name: eth1
 - name: router2
 interfaces:
 - name: eth0
 - name: eth1
 - name: ns2
 interfaces:
 - name: eth0

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: router1
 port: eth0
 - name: conn2
 endpoint_a:
 name: router1
 port: eth1
 endpoint_b:
 name: router2
 port: eth0
 - name: conn3
 endpoint_a:
 name: router2
 port: eth1
 endpoint_b:
 name: ns2
 port: eth0

86

C.10 Lab 7

switch: Yaml
 - name: sw1

namespace:
 - name: ns1
 interfaces:
 - name: eth0
 ip: 10.0.0.1/24
 gateway: 10.0.0.254
 - name: ns2
 interfaces:
 - name: eth0
 ip: 10.0.0.2/24
 gateway: 10.0.0.254
 - name: router
 interfaces:
 - name: eth0
 ip: 10.0.0.254/24
 - name: eth1
 ip: 90.70.60.1/30
 commands:
 - /usr/sbin/sysctl -w net.ipv4.ip_forward=1
 - name: internet
 interfaces:
 - name: eth0
 ip: 90.70.60.2/30

cable:
 - name: conn1
 endpoint_a:
 name: ns1
 port: eth0
 endpoint_b:
 name: sw1
 - name: conn2
 endpoint_a:
 name: ns2
 port: eth0

87

 endpoint_b:
 name: sw1
 - name: conn3
 endpoint_a:
 name: router
 port: eth0
 endpoint_b:
 name: sw1
 - name: conn4
 endpoint_a:
 name: router
 port: eth1
 endpoint_b:
 name: internet
 port: eth0

C.11 Lab VXVDE

namespace: Yaml
 - name: router
 interfaces:
 - name: eth0

cable:
 - name: conn1
 endpoint_a:
 name: router
 port: eth0
 endpoint_b:
 name: vxvde1

vxvde:
 - name: vxvde1
 addr: 239.0.0.1
 port: 14789

88

Bibliography
[1] L. L. Peterson and B. S. Davie, Computer networks: a systems approach.

Elsevier, 2007.

[2] J. Kurose and K. Ross, “Computer networks: A top down approach featuring
the internet.” Pearson Addison Wesley, 2010.

[3] “VirtualSquare.” [Online]. Available: https://wiki.virtualsquare.org/#/

[4] “GNS3.” [Online]. Available: https://gns3.com/

[5] “GNS3 history.” [Online]. Available: https://gns3.wordpress.com/history/

[6] “GNS3 history.” [Online]. Available: https://rednectar.net/gns3-workbench/
a-little-gns3-history/

[7] J. C. Neumann, The Book of GNS3, 1st ed. USA: No Starch Press, 2014.

[8] “vpcs.” [Online]. Available: https://github.com/GNS3/vpcs/

[9] “GNS3 README.” [Online]. Available: https://github.com/GNS3/gns3-
server/blob/master/README.md

[10] Cisco, “Packet Tracer.” [Online]. Available: https://www.netacad.com/cisco-
packet-tracer

[11] “Eve NG.” [Online]. Available: https://www.eve-ng.net/

[12] Boson, “NetSim.” [Online]. Available: https://www.boson.com/NetSim-13

[13] Boson, “NetSim user guide.” [Online]. Available: https://boson.com/Files/
Support/NetSim-Online-User-Guide.pdf

89

https://wiki.virtualsquare.org/#/
https://gns3.com/
https://gns3.wordpress.com/history/
https://rednectar.net/gns3-workbench/a-little-gns3-history/
https://rednectar.net/gns3-workbench/a-little-gns3-history/
https://github.com/GNS3/vpcs/
https://github.com/GNS3/gns3-server/blob/master/README.md
https://github.com/GNS3/gns3-server/blob/master/README.md
https://www.netacad.com/cisco-packet-tracer
https://www.netacad.com/cisco-packet-tracer
https://www.eve-ng.net/
https://www.boson.com/NetSim-13
https://boson.com/Files/Support/NetSim-Online-User-Guide.pdf
https://boson.com/Files/Support/NetSim-Online-User-Guide.pdf

[14] “Kathará.” [Online]. Available: https://www.kathara.org/

[15] “Kathará Success Stories.” [Online]. Available: https://www.kathara.org/
stories.html

[16] M. Scazzariello, L. Ariemma, and T. Caiazzi, “Kathará: A Lightweight
Network Emulation System,” in NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020, pp. 1–2. doi: 10.1109/
NOMS47738.2020.9110351.

[17] “Kathará node startup configuration file.” [Online]. Available:
https://github.com/KatharaFramework/Kathara-Labs/blob/main/main-labs/
data-center-routing/data-center-vxlan/kathara-lab_vxlan-base/s1.startup

[18] “Kathará lab directory example.” [Online]. Available: https://github.com/Kat
haraFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab

[19] “Kathará lab.conf file example.” [Online]. Available: https://github.com/Ka
tharaFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab/
lab.conf

[20] “Docker Network Plugins.” [Online]. Available: https://docs.docker.com/
engine/extend/plugins_network/

[21] “Kathará network plugin.” [Online]. Available: https://github.com/KatharaF
ramework/NetworkPlugin/

[22] “CGo.” [Online]. Available: https://go.dev/blog/cgo

[23] “Kathará lab directory example.” [Online]. Available: https://github.com/Kat
haraFramework/Kathara-Labs/tree/main/main-labs

[24] “containerlab.” [Online]. Available: https://containerlab.dev/

[25] “YAML.” [Online]. Available: https://yaml.org/

[26] “containerlab VM.” [Online]. Available: https://containerlab.dev/manual/
vrnetlab/

[27] “containerlab Images.” [Online]. Available: https://containerlab.dev/manual/
kinds/

[28] “containerlab Network.” [Online]. Available: https://containerlab.dev/
manual/network/

90

https://www.kathara.org/
https://www.kathara.org/stories.html
https://www.kathara.org/stories.html
https://doi.org/10.1109/NOMS47738.2020.9110351
https://doi.org/10.1109/NOMS47738.2020.9110351
https://github.com/KatharaFramework/Kathara-Labs/blob/main/main-labs/data-center-routing/data-center-vxlan/kathara-lab_vxlan-base/s1.startup
https://github.com/KatharaFramework/Kathara-Labs/blob/main/main-labs/data-center-routing/data-center-vxlan/kathara-lab_vxlan-base/s1.startup
https://github.com/KatharaFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab
https://github.com/KatharaFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab
https://github.com/KatharaFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab/lab.conf
https://github.com/KatharaFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab/lab.conf
https://github.com/KatharaFramework/Kathara-Labs/tree/main/exercises/02-add-one-router/lab/lab.conf
https://docs.docker.com/engine/extend/plugins_network/
https://docs.docker.com/engine/extend/plugins_network/
https://github.com/KatharaFramework/NetworkPlugin/
https://github.com/KatharaFramework/NetworkPlugin/
https://go.dev/blog/cgo
https://github.com/KatharaFramework/Kathara-Labs/tree/main/main-labs
https://github.com/KatharaFramework/Kathara-Labs/tree/main/main-labs
https://containerlab.dev/
https://yaml.org/
https://containerlab.dev/manual/vrnetlab/
https://containerlab.dev/manual/vrnetlab/
https://containerlab.dev/manual/kinds/
https://containerlab.dev/manual/kinds/
https://containerlab.dev/manual/network/
https://containerlab.dev/manual/network/

[29] “containerlab Labs Examples.” [Online]. Available: https://containerlab.dev/
lab-examples/lab-examples/

[30] M. Mahalingam et al., “Virtual eXtensible Local Area Network (VXLAN):
A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks.” [Online]. Available: https://www.rfc-editor.org/info/rfc7348

[31] “VNX.” [Online]. Available: https://web.dit.upm.es/vnxwiki/index.php/
Main_Page

[32] “Marionnet.” [Online]. Available: https://www.marionnet.org/site/index.
php/en/

[33] “QEMU.” [Online]. Available: https://www.qemu.org/index.html

[34] “VirtualBox.” [Online]. Available: https://www.virtualbox.org/

[35] J. D. Dike, “User-mode Linux,” in Proceedings of the 2001 Ottawa Linux
Symposium (OLS), Ottawa, 2001.

[36] J. D. Dike, “Making Linux Safe for Virtual Machines,” in Proceedings of the
2002 Ottawa Linux Symposium (OLS), Ottawa, 2002.

[37] R. Davoli, “Vde: Virtual distributed ethernet,” in First international conference
on testbeds and research infrastructures for the development of networks and
communities, 2005, pp. 213–220.

[38] “kvm.” [Online]. Available: https://linux-kvm.org/

[39] “picotcp.” [Online]. Available: https://github.com/virtualsquare/picotcp

[40] “libvdestack.” [Online]. Available: https://github.com/rd235/libvdestack

[41] “umps3.” [Online]. Available: https://wiki.virtualsquare.org/#/education/
umps

[42] “VDE-2.” [Online]. Available: https://github.com/virtualsquare/vde-2

[43] B. W. Kernighan and D. M. Ritchie, The C programming language. prentice-
Hall, 1988.

[44] “vdeplug4.” [Online]. Available: https://github.com/rd235/vdeplug4

[45] R. Davoli and M. Goldweber, “VXVDE: A switch-free VXLAN replacement,”
in 2015 IEEE Globecom Workshops (GC Wkshps), 2015, pp. 1–6.

91

https://containerlab.dev/lab-examples/lab-examples/
https://containerlab.dev/lab-examples/lab-examples/
https://www.rfc-editor.org/info/rfc7348
https://web.dit.upm.es/vnxwiki/index.php/Main_Page
https://web.dit.upm.es/vnxwiki/index.php/Main_Page
https://www.marionnet.org/site/index.php/en/
https://www.marionnet.org/site/index.php/en/
https://www.qemu.org/index.html
https://www.virtualbox.org/
https://linux-kvm.org/
https://github.com/virtualsquare/picotcp
https://github.com/rd235/libvdestack
https://wiki.virtualsquare.org/#/education/umps
https://wiki.virtualsquare.org/#/education/umps
https://github.com/virtualsquare/vde-2
https://github.com/rd235/vdeplug4

[46] “vdens.” [Online]. Available: https://github.com/rd235/vdens

[47] “libvdeslirp.” [Online]. Available: https://github.com/virtualsquare/
libvdeslirp

[48] K. Morris, Infrastructure as code. O'Reilly Media, 2020.

[49] “OpenTofu.” [Online]. Available: https://opentofu.org/

[50] “Git.” [Online]. Available: https://git-scm.com/

[51] “Rust.” [Online]. Available: https://www.rust-lang.org/

[52] S. Klabnik and C. Nichols, The Rust programming language. No Starch Press,
2023.

[53] “ImagiNet Github repository.” [Online]. Available: https://github.com/
samuelemusiani/imaginet

[54] “Vagrant.” [Online]. Available: https://developer.hashicorp.com/vagrant

[55] “Alpine Linux.” [Online]. Available: https://www.alpinelinux.org/

[56] “Hyperfine.” [Online]. Available: https://github.com/sharkdp/hyperfine

[57] “iperf3 website.” [Online]. Available: https://iperf.fr/iperf-download.php

[58] T. H. M. and, “Experiential learning – a systematic review and revision of
Kolb’s model,” Interactive Learning Environments, vol. 28, no. 8, pp. 1064–
1077, 2020, doi: 10.1080/10494820.2019.1570279.

[59] L. Bellido, D. Fernández, E. Pastor, and J. Berrocal, “New strategies for
learning computer networks,” in Proceedings of the 2012 IEEE Global Engi-
neering Education Conference (EDUCON), 2012, pp. 1–5. doi: 10.1109/
EDUCON.2012.6201146.

[60] L. Bellido Triana, D. Fernández Cambronero, and E. Pastor Martín, “Towards
a virtualized Internet for computer networking assignments,” in 2013 IEEE
Global Engineering Education Conference (EDUCON), IEEE, 2013, pp. 1009–
1014. doi: 10.1109/EduCon.2013.6530231.

[61] “iproute2.” [Online]. Available: https://wiki.linuxfoundation.org/
networking/iproute2

[62] “Internet Control Message Protocol.” [Online]. Available: https://www.rfc-
editor.org/info/rfc792

92

https://github.com/rd235/vdens
https://github.com/virtualsquare/libvdeslirp
https://github.com/virtualsquare/libvdeslirp
https://opentofu.org/
https://git-scm.com/
https://www.rust-lang.org/
https://github.com/samuelemusiani/imaginet
https://github.com/samuelemusiani/imaginet
https://developer.hashicorp.com/vagrant
https://www.alpinelinux.org/
https://github.com/sharkdp/hyperfine
https://iperf.fr/iperf-download.php
https://doi.org/10.1080/10494820.2019.1570279
https://doi.org/10.1109/EDUCON.2012.6201146
https://doi.org/10.1109/EDUCON.2012.6201146
https://doi.org/10.1109/EduCon.2013.6530231
https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc792

[63] “An Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hard-
ware.” [Online]. Available: https://www.rfc-editor.org/info/rfc826

[64] W. Eddy, “Transmission Control Protocol (TCP).” [Online]. Available: https://
www.rfc-editor.org/info/rfc9293

[65] “Wireshark website.” [Online]. Available: https://www.wireshark.org/

[66] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks,” IEEE Std 802.1Q-2022 (Revision of IEEE Std 802.1Q-2018),
vol. 0, no. , pp. 1–2163, 2022, doi: 10.1109/IEEESTD.2022.10004498.

[67] “Netfilter.” [Online]. Available: https://www.netfilter.org/

[68] “Shorewall.” [Online]. Available: https://shorewall.org/

[69] “AGPL-3.” [Online]. Available: https://www.gnu.org/licenses/agpl-3.0

93

https://www.rfc-editor.org/info/rfc826
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://www.wireshark.org/
https://doi.org/10.1109/IEEESTD.2022.10004498
https://www.netfilter.org/
https://shorewall.org/
https://www.gnu.org/licenses/agpl-3.0

94

Acknowledgements
I would like to express my deepest gratitude to my family for their unconditional
and immense support. They encouraged me to follow my dreams without any
pressure or imposition. I am truly grateful for their presence and belief in my
abilities.

I am grateful to my supervisor, Renzo Davoli, for his teaching and especially for
supporting the wonderful project that ADMStaff is. During these university years,
I had the freedom of experimentation that helped me discover my interests and
understand what master’s degree to pursue.

I deeply express my gratitude to Gio, for these 14 years and for all the amazing
adventures and time spent together. You shaped the person that I have become
and you have profoundly helped me uncover my creative half. You taught me that
being unconventional is rare and something to be proud of.

I will forever be thankful to Mia, for being my harbour when I was barely afloat.
You are the only person who is capable of comforting me when everything is
collapsing.

I will always remember Omar, Lele and Lollo, for being there since the beginning.
The moments spent laudly chatting over the most ephemeral things, and the days
spent programming and hunting the most insidious bugs are impossible to forget.

I will never forget how joyful and bright the days were with Alice. All the hours
spent underground without a ray of sunshine and the nights filled with live music.
Your energy is endless.

I am obliged to Luca, for introducing me to ADM and believing in my abilities
from the first year. You are an inspiration.

95

	Sommario
	Abstract
	Introduction
	State of the art
	GNS3
	Packet Tracer
	EVE-NG
	Boson NetSim
	Kathará
	Containerlab
	Vnx
	Marionnet

	Objective
	Structure of the document

	Implementation
	Background
	VMs
	Linux namespaces
	Docker

	VDE
	VDE-2
	vdeplug4
	vdens
	libvdeslirp

	Declarative configuration
	Interface
	Rust
	Stateful without a service
	Keeping it simple
	Real word experience
	Performance
	ImagiNet performance
	Topology performance

	Learning by doing
	Networking basics
	Lab 0
	Interface configuration and connetivity test
	Wireshark and ARP
	TCP basics

	Lab 1
	TCP and UDP on lossy connections
	TCP performance

	Switching and VLANs
	VDE switch interface
	Lab 2
	Lab 3
	VLAN configuration and isolation
	802.1Q tag
	More advance scenarios

	Routing
	Lab 4
	Lab 5
	Lab 6

	Firewalls
	Lab 7
	Source NAT
	Destination NAT

	Advance scenarios
	Group laboratories

	Teaching with ImagiNet

	Conclusions
	Improvements
	IaC differential updates
	Missing VDE features and optimisations
	Didattic router and firewall
	Software packaging

	Final thoughts

	Appendices
	Topology generator
	Topology creation
	Topology 0 efficient
	Topology 0 ImagiNet
	Topology 1 efficient
	Topology 1 ImagiNet
	Topology 2 efficient
	Topology 2 ImagiNet
	Topology 3 ImagiNet

	Laboratories
	Lab 0
	Lab 1
	TCP/UDP client script
	TCP/UDP server script
	Lab 2
	Lab 3
	Lab 4
	Lab 5
	Lab 6
	Lab 7
	Lab VXVDE

	Bibliography
	Acknowledgements

